Skip to main content

Abstract

Nanocellulose is a class of fascinating bio-based nanomaterials with dimensions from few nanometers up to several micrometers depending upon the type of cellulosic fibers obtained from the source. Cellulose is a biopolymer present in huge amounts in the biosphere that mainly include the cell walls of green plants, bacteria, fungi, and tunicates. The isolation of nanocellulosic fibers is done by various methods like enzymatic methods, chemical methods, and chemical combined with mechanical methods. A large number of parameters like methodology used for isolation, source of cellulose, age, and reaction parameters affect the physicochemical properties of nanocellulose. Nanocellulose show unique features like biocompatibility, abundance in nature, high thermal stability, great mechanical, chemical, and physical properties which make them a suitable candidate for applicability as reinforcing agents in nanocomposites formation. The nanocellulose also plays a great role in drug delivery, tissue engineering, and repair of organs. This chapter mainly deals with detailed description of nanocellulose, types, sources, and methodologies opted for isolation, properties, and surface modifications. The applications of nanocellulose in the medical are also covered to make nanocellulose as a potential candidate to serve humankind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Halim ES (2014) Chemical modification of cellulose extracted from sugarcane bagasse: preparation of hydroxyethyl cellulose. Arab J Chem 7:362–371

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  PubMed  Google Scholar 

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023

    Google Scholar 

  • Abou-Zeid RE, Hassan EA, Bettaieb F et al (2015) Use of cellulose and oxidized cellulose nanocrystals from olive stones in chitosan bionanocomposites. J Nanomater 2015. doi:10.1155/2015/687490

    Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  PubMed  Google Scholar 

  • Azizi S, Ahmad MBH, Hussein MZ et al (2013) Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO-Ag heterostructure nanoparticles. Molecules 18:6269–6280

    Article  CAS  PubMed  Google Scholar 

  • Barud HO, Barud HDS, Cavicchioli M et al (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51

    Article  CAS  Google Scholar 

  • Barud HS, Regiani T, Marques RF et al (2011) Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J Nanomater 2011. doi:10.1155/2011/721631

    Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Bras DL, Stromme M, Mihranyan A (2015) Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications. J Phys Chem B 119:5911–5917

    Article  PubMed  CAS  Google Scholar 

  • Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341

    Article  CAS  PubMed  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  PubMed  Google Scholar 

  • Brito BSL, Pereira FV, Putaux JL et al (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536

    Article  CAS  Google Scholar 

  • Butchosa N, Brown C, Larsson PT et al (2013) Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chem 15:3404–3413

    Article  CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Muir AD et al (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2(7):502–510

    Article  CAS  Google Scholar 

  • Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19(38):7137–7145

    Article  CAS  Google Scholar 

  • Chahal S, Hussain FSJ, Kumar A et al (2015) Electrospun hydroxyethyl cellulose nanofibers functionalized with calcium phosphate coating for bone tissue engineering. RSC Adv 5:29497–29504

    Article  CAS  Google Scholar 

  • Chan R, Lim LT, Barbut S et al (2014) Extrusion and characterization of soy protein film incorporated with soy cellulose microfibers. Int Polym Process 29(4):467–476

    Article  CAS  Google Scholar 

  • Chen G, Liu H (2008) Electrospun cellulose nanofiber reinforced soybean protein isolate composite film. J Appl Polym Sci 110(2):641–646

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Harper DP (2009) Effects of process and source on elastic modulus of single cellulose fibrils evaluated by atomic force microscopy. Compos Part A 40:583–588

    Article  CAS  Google Scholar 

  • Cherian BM, Pothan LA, Nguyen-Chung T et al (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56:5617–5627

    Article  CAS  PubMed  Google Scholar 

  • Correa AC, Teixeira EDM, Pessan LA et al (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192

    Article  CAS  Google Scholar 

  • Das M, Chakraborty D (2008) Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. J Appl Polym 107:522–527

    Article  CAS  Google Scholar 

  • de Campos A, Correa AC, Cannella D et al (2013) Obtaining nanofibers from curaua and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500

    Article  CAS  Google Scholar 

  • de Mesquita JP, Donnici CL, Teixeira IF et al (2012) Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr Polym 90(1):210–217

    Article  PubMed  CAS  Google Scholar 

  • Deepa B, Abraham E, Cherian BM et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technol 102:1988–1997

    Article  CAS  Google Scholar 

  • Domingues RM, Silva M, Gershovich P et al (2015) Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug Chem 26:1571–1581

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

    Article  CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    Article  CAS  Google Scholar 

  • Duran N, Lemes AP, Duran M et al (2011) A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production. J Chil Chem Soc 56:672–677

    Article  CAS  Google Scholar 

  • Edgar CD, Gray DG (2001) Induced circular dichroism of chiral nematic cellulose films. Cellulose 8:5–12

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Elisseeff JH, Lee A, Kleinman HK et al (2002) Biological response of chondrocytes to hydrogels. In: Sipe JD, Kelley CA, McNichol LA (eds) Reparative medicine: growing tissues and organs, vol 961. New York Academy of Science, New York, pp 118–122

    Google Scholar 

  • Fahma F, Iwamoto S, Hori N et al (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985

    Article  CAS  Google Scholar 

  • Figueiredo AR, Figueiredo AG, Silva NH et al (2015) Antimicrobial bacterial cellulose nanocomposites prepared by in situ polymerization of 2-aminoethyl methacrylate. Carbohydr Polym 123:443–453

    Article  CAS  PubMed  Google Scholar 

  • Fortunati E, Puglia D, Kenny JM et al (2013a) Effect of ethylene-co-vinyl acetate-glycidylmethacrylate and cellulose microfibers on the thermal, rheological and biodegradation properties of poly (lactic acid) based systems. Polym Degrad Stability 98(12):2742–2751

    Article  CAS  Google Scholar 

  • Fortunati E, Puglia D, Monti M et al (2013b) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230

    Article  CAS  Google Scholar 

  • Frone AN, Berlioz S, Chailan JF (2011) Cellulose fiber-reinforced polylactic acid. Polym Compos 32:976–985

    Article  CAS  Google Scholar 

  • Fu L, Zhang Y, Li C (2012) Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J Mater Chem 22:12349–12357

    Article  CAS  Google Scholar 

  • Galkina OL, Ivanov VK, Agafonov AV (2015) Cellulose nanofiber–titania nanocomposites as potential drug delivery systems for dermal applications. J Mater Chem B 3:1688–1698

    Article  CAS  Google Scholar 

  • George J, Ramana KV, Bawa AS (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48:50–57

    Article  CAS  PubMed  Google Scholar 

  • George J, Ramana KV, Sabapathy SN et al (2005) Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membrane. World J Microbiol Biotechnol 21:1323–1327

    Article  CAS  Google Scholar 

  • George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54

    Article  PubMed  PubMed Central  Google Scholar 

  • George J, Sajeevkumar VA, Ramana KV et al (2012) Augmented properties of PVA hybrid nanocomposites containing cellulose nanocrystals and silver nanoparticles. J Mater Chem 22(42):22433–22439

    Article  CAS  Google Scholar 

  • Goelzer FDE, Faria-Tischer PCS, Vitorino JC et al (2009) Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater Sci Eng, C 29:546–551

    Article  CAS  Google Scholar 

  • Gousse C, Chanzy H, Cerrada ML et al (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575

    Article  CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    Article  CAS  PubMed  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Hardelin L, Perzon E, Hagstrom B et al (2013) Influence of molecular weight and rheological behavior on electrospinning cellulose nanofibers from ionic liquids. J Appl Polym Sci 130:2303–2310

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA et al (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  • Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212

    Article  CAS  Google Scholar 

  • Hsieh Y-C, Yano H, Nogi M et al (2008) An estimation of the young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513

    Article  CAS  Google Scholar 

  • Huang L, Chen X, Nguyen TX et al (2013) Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem B 1:2976–2984

    Article  CAS  Google Scholar 

  • Hui J, Yuanyuan J, Jiao W et al (2009) Potentiality of bacterial cellulose as the scaffold of tissue engineering of cornea. In: Biomedical engineering and informatics, BMEI’09: 2nd international conference. IEEE, pp 1–5

    Google Scholar 

  • Imai T, Putaux JL, Sugiyama J (2003) Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer 44:1871–1879

    Article  CAS  Google Scholar 

  • Iqbal HM, Kyazze G, Tron T et al (2014) Laccase-assisted grafting of poly (3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation. Carbohydr Polym 113:131–137

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellulose for application in composites. Int J Innovative Res Sci Engand Technol 2(10):5451

    Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    CAS  PubMed  Google Scholar 

  • Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12:831–836

    Article  CAS  PubMed  Google Scholar 

  • Jackson JK, Letchford K, Wasserman BZ (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Inter J Nanomed 6:321

    CAS  Google Scholar 

  • Jokerst JV, Van de Sompel D, Bohndiek SE et al (2014) Cellulose nanoparticles are a biodegradable photoacoustic contrast agent for use in living mice. Photoacoustics 2:119–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Junka K, Guo J, Filpponen I et al (2014) Modification of cellulose nanofibrils with luminescent carbon dots. Biomacromolecules 15:876–881

    Article  CAS  PubMed  Google Scholar 

  • Kaboorani A, Riedl B (2015) Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind Crops Prod 65:45–55

    Article  CAS  Google Scholar 

  • Kalia S, Dufresne A, Cherian BM et al (2011) Cellulose-based bio-and nanocomposites: a review. Int J Polym Sci 2011. doi:10.1155/2011/837875

    Google Scholar 

  • Kan KH, Li J, Wijesekera K et al (2013) Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Biomacromolecules 14:3130–3139

    Article  CAS  PubMed  Google Scholar 

  • Karadag A, Ozcelik B, Huang Q (2014) Quercetin nanosuspensions produced by high-pressure homogenization. J Agric Food Chem 62:1852–1859

    Article  CAS  PubMed  Google Scholar 

  • Kargarzadeh H, Ahmad I, Abdullah I et al (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from Kenaf bast fibers. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  • Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346:76–85

    Article  CAS  PubMed  Google Scholar 

  • Keshk SMAS (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:150–160

    Article  Google Scholar 

  • Khan S, Ul-Islam M, Khattak WA et al (2015) Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22:565–579

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Krassig HA (ed) (1993) Cellulose-structure, accessibility and reactivity. Gordon and Breach Science Publishers, Yverdon, Switzerland, pp 307–314

    Google Scholar 

  • Lavoine N, Desloges I, Dufresne A et al (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Tang M, Williams CK et al (2012) Carbohydrate derived copoly (lactide) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposites. Compos Sci Technol 72:1646–1650

    Article  CAS  Google Scholar 

  • Li J, Wei X, Wanga Q et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jiang H, Zheng W et al (2015) Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. J Mater Chem B 3:3498–3507

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  • Lin WC, Lien CC, Yeh HJ et al (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Chen X, Yue Y et al (2011) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84:316–322

    Article  CAS  Google Scholar 

  • Loría-Bastarrachea MI, Carrillo-Escalante HJ, Aguilar-Vega MJ (2002) Grafting of poly (acrylic acid) onto cellulosic microfibers and continuous cellulose filaments and characterization. J Appl Polym Sci 83:386–393

    Article  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296

    Article  CAS  Google Scholar 

  • Lu T, Li Q, Chen W et al (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138

    Article  CAS  Google Scholar 

  • Luo H, Xiong G, Hu D et al (2013) Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater Chem Phys 143:373–379

    Article  CAS  Google Scholar 

  • Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci B: Polym Phys 52:791–806

    Article  CAS  Google Scholar 

  • Miettinen A, Chinga-Carrasco G, Kataja M (2014) Three-dimensional microstructural properties of nanofibrillated cellulose films. Int J Mol Sci 15:6423–6440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. J Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Moritz S, Wiegand C, Wesarg F et al (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471:45–55

    Article  CAS  PubMed  Google Scholar 

  • Müller A, Ni Z, Hessler N et al (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592

    Article  PubMed  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A-Mater Sci Process 78:547–552

    Article  CAS  Google Scholar 

  • Nasri-Nasrabadi B, Behzad T, Bagheri R (2014a) Extraction and characterization of rice straw cellulose nanofibers by an optimized chemomechanical method. J Appl Polym Sci 131:40063–40070

    Article  CAS  Google Scholar 

  • Nasri-Nasrabadi B, Mehrasa M, Rafienia M et al (2014b) Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr Polym 108:232–238

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HD, Mai TTT, Nguyen NB et al (2013) A novel method for preparing microfibrillated cellulose from bamboo fibers. Adv Nat Sci Nanosci Nanotechnol 4:015016

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  PubMed  Google Scholar 

  • Olsson RT, Kraemer R, Rubio AL et al (2010) Extraction of microfibrils from bacterial cellulose networks for electrospinning of anisotropic biohybrid fiber yarns. Macromolecules 43:4201–4209

    Article  CAS  Google Scholar 

  • Orelma H, Filpponen I, Johansson LS et al (2012) Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases 7(1):61. doi:10.1007/s13758-012-0061-7

    CAS  PubMed  Google Scholar 

  • Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity-relating pH to biomatrix opening. New Biotechnol 27:739–750

    Article  CAS  Google Scholar 

  • Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. Trac-Trend Anal Chem 28:925–942

    Article  CAS  Google Scholar 

  • Peltzer M, Pei A, Zhou Q et al (2014) Surface modification of cellulose nanocrystals by grafting with poly (lactic acid). Polym Int 63:1056–1062

    Article  CAS  Google Scholar 

  • Pereda M, Amica G, Rácz I et al (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103(1):76–83

    Article  CAS  Google Scholar 

  • Pracella M, Haque MMU, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55(16):3720–3728

    Article  CAS  Google Scholar 

  • Qian Y, Qin Z, Vu NM et al (2012) Comparison of nanocrystals from TEMPO oxidation of bamboo, softwood, and cotton linter fibers with ultrasonic-assisted process. BioRes 7:4952–4964

    Article  Google Scholar 

  • Roohani M, Habibi Y, Belgacem NM et al (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. J Eur Polym 44:2489–2498

    Article  CAS  Google Scholar 

  • Rosa SM, Rehman N, de Miranda MIG et al (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 87:1131–1138

    Article  CAS  Google Scholar 

  • Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioRes 8:1893–1908

    Article  Google Scholar 

  • Sacui IA, Nieuwendaal RC, Burnett DJ et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6(9):6127–6138

    Article  CAS  PubMed  Google Scholar 

  • Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18:351–363

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO mediated system. Carbohydr Polym 61:183–190

    Article  CAS  Google Scholar 

  • Saska S, Teixeira LN, de Oliveira PT et al (2012) Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J Mater Chem 22(41):22102–22112

    Article  CAS  Google Scholar 

  • Shamsabadi MA, Behzad T, Bagheri R (2015) Optimization of acid hydrolysis conditions to improve cellulose nanofibers extraction from wheat straw. Fiber Polym 16:579–584

    Article  CAS  Google Scholar 

  • Sheykhnazari S, Tabarsa T, Ashori A et al (2011) Bacterial synthesized cellulose nanofibers; effects of growth times and culture mediums on the structural characteristics. Carbohydr Polym 86:1187–1191

    Article  CAS  Google Scholar 

  • Shi X, Zheng Y, Wang G et al (2014) pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv 4:47056–47065

    Article  CAS  Google Scholar 

  • Silverio HA, Neto WPF, Dantas NO et al (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crop Prod 44:427–436

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010a) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Siqueira G, Tapin-Lingua S, Bras J et al (2010b) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Sjostrom E (ed) (1993) Wood chemistry: fundamentals and application. Academic Press Inc., San Diego, USA

    Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  CAS  PubMed  Google Scholar 

  • Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219

    Article  CAS  Google Scholar 

  • Svensson A, Nicklasson E, Harrah T et al (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    Article  CAS  PubMed  Google Scholar 

  • Thomas V, Namdeo M, Murali Mohan Y et al (2007) Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. J Macromol Sci A-Pure Appl Chem 45:107–119

    Article  CAS  Google Scholar 

  • Torres FG, Diaz RM (2004) Morphological characterization of natural fibre reinforced thermoplastics (NFRTP) processed by extrusion, compression and rotational moulding. Polym Polym Compos 12:705–718

    CAS  Google Scholar 

  • Trovatti E, Silva NH, Duarte IF et al (2011) Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules 12:4162–4168

    Article  CAS  PubMed  Google Scholar 

  • Trovatti E, Carvalho AJ, Ribeiro SJ et al (2013) Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers. Biomacromolecules 14:2667–2674

    Google Scholar 

  • Vivekanandhan S, Christensen L, Misra M et al (2012) Green process for impregnation of silver nanoparticles into microcrystalline cellulose and their antimicrobial bionanocomposite films. J Biomater Nanobiotechnol 3. doi:10.4236/jbnb.2012.33035

    Google Scholar 

  • Wang B, Sain M (2007) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56:538–546

    Article  CAS  Google Scholar 

  • Wang H, Zhu E, Yang J et al (2012) Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C 116(24):13013–13019

    Article  CAS  Google Scholar 

  • Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113:1270–1275

    Article  CAS  Google Scholar 

  • Wang Y, Wei X, Li J et al (2015) Study on nanocellulose by high pressure homogenization in homogeneous isolation. Fiber Polym 16:572–578

    Article  CAS  Google Scholar 

  • Wanna D, Alam C, Toivola DM et al (2013) Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materials. Adv Nat Sci Nanosci Nanotechnol 4:045002

    Article  CAS  Google Scholar 

  • Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7:421–432

    Article  CAS  Google Scholar 

  • Williamson RE, Burn JE, Hocart CH (2002) Towards the mechanism of cellulose synthesis. Trends Plant Sci 7:461–467

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zheng Y, Wen X et al (2014) Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9:035005

    Article  PubMed  CAS  Google Scholar 

  • Xiong R, Zhang X, Tian D et al (2012) Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose 19:1189–1198

    Article  CAS  Google Scholar 

  • Yadav R, Kumar D, Kumari A et al (2014) Encapsulation of catechin and epicatechin on BSA NPs improved their stability and antioxidant potential. EXCLI J 13:331–346

    PubMed  PubMed Central  Google Scholar 

  • Yan M, Li S, Zhang M et al (2013) Characterization of surface acetylated nanocrystalline cellulose by single-step method. BioRes 8:6330–6341

    Google Scholar 

  • Yu HY, Chen R, Chen GY et al (2015) Silylation of cellulose nanocrystals and their reinforcement of commercial silicone rubber. J Nanopart Res 17:1–3

    Article  CAS  Google Scholar 

  • Yuan H, Nishiyama Y, Wada M et al (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7:696–700

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Salick MR, Cordie TM et al (2015) Incorporation of poly (ethylene glycol) grafted cellulose nanocrystals in poly (lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng, C 49:463–471

    Article  CAS  Google Scholar 

  • Zhao Y, Li J (2014) Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 21:3427–3441

    Article  CAS  Google Scholar 

  • Zhou P, Wang H, Yang J et al (2012) Bacteria cellulose nanofibers supported palladium (0) nanocomposite and its catalysis evaluation in Heck reaction. Ind Eng Chem Res 51(16):5743–5748

    Article  CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Mondragon ARI et al (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to Director for providing immense facilities. We pay our great gratitude toward Council of Scientific and Industrial Research, New Delhi for financial assistance. RS is highly thankful to UGC for providing senior research fellowship. Academy of Scientific and Innovative Research, New Delhi is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh Kumar Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Singla, R., Guliani, A., Kumari, A., Yadav, S.K. (2016). Nanocellulose and Nanocomposites. In: Yadav, S. (eds) Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration. Springer, Singapore. https://doi.org/10.1007/978-981-10-0818-4_5

Download citation

Publish with us

Policies and ethics