Skip to main content

Introduction

  • Chapter
  • First Online:
Snow Mold
  • 423 Accesses

Abstract

In cold-temperate region, plants are more frequently damaged by biotic factors, primarily snow mold, than by abiotic factors such as freezing. Snow mold is used here as a generic name for plant diseases that occur under snow cover. Many different fungi may be involved, and each snow mold fungus has its own ecological and physiological features. They normally infect and can prevail on plants under snow, but generally are dormant during other seasons. Their habitat under snow is characterized by constant low temperature, darkness, and high moisture. Snow mold fungi are, in general, opportunistic pathogens, which, in the absence of antagonists, attack plants depleted of reserve material. Such organisms which not only tolerate cold temperatures but thrive under such conditions are called “psychrophiles.” In the final section of this chapter, ambiguities in the use of the common term “psychrophile” are illustrated, and these are ascribed to the complex life cycles of different fungi. Another term, “cryophile,” may be more appropriate, to denote fungi, including snow mold fungi that prevail in the cryosphere.

figure a

Dr. Takao Araki who showed NM the significance of field observations and led him to a whole new world under snow; photograph taken circa 1978.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe J, Matsumoto N (1981) Resistance to snow mould disease caused by Typhula spp. in cocksfoot. J Jpn Soc Grassl Sci 27:152–158

    Google Scholar 

  • Aitchison CW (1979) Winter-active subnivean invertebrates in Southern Canada. III. Acari. Pedobiologia 19:153–160

    Google Scholar 

  • Andersen IL (1992) Winter injuries in grasslands in northern Norway caused by low temperature fungi. Nor J Agr Sci Suppl 7:13–20

    Google Scholar 

  • Annonimous (2000) Common names of economic plant diseases in Japan. Japan Plant Protection Association, Tokyo, pp 124–126, p 156 (in Japanese)

    Google Scholar 

  • Araki T (1975) Outbreak of snow mold on forage grass in Hokkaido. Shokubutsu Boueki 29:484–488 (in Japanese)

    Google Scholar 

  • Årsvoll K (1973) Winter damage in Norwegian grasslands, 1968–1971. Meld Norg LandbrHøgsk 52(3):1–21

    Google Scholar 

  • Årsvoll K (1975) Fungi causing winter damage on cultivated grasses in Norway. Meld Norg LandbrHøgsk 54(9):1–49

    Google Scholar 

  • Asuyama H (1940) Leaf blotch of wheat caused by Fusarium nivale (Fr.) Ces. [Calonectria graminicola (Berk. Et Br.) Wr ]. Ann Phytopathol Soc Jpn 10:51–54, in Japanese

    Article  Google Scholar 

  • Baxter RM, Gibbons NE (1962) Observations on the physiology of psychrophilism in a yeast. Can J Microbiol 8:511–517

    Article  CAS  Google Scholar 

  • Bleak AT (1970) Disappearance of plant material under a winter snow cover. Ecology 51:915–917

    Article  Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1996) Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32:93–113

    Article  Google Scholar 

  • Bruehl GW, Cunfer BM (1971) Physiologic and environmental factors that affect the severity of snow mold of wheat. Phytopathology 61:792–799

    Article  Google Scholar 

  • Bruehl GW, Sprague R, Fischer WB, Nagamitsu M, Nelson WL, Vogel OA (1966) Snow mold of winter wheat in Washington. Wash Agric Exp Stn Bull 677:1–21

    Google Scholar 

  • Cheng D, Igarashi T (1987) Fungi associated with natural regeneration of Picea jezoensis Carr.in seed stage -their distribution on forest floors and pathogenicity to the seeds. Res Bull Exp For Hokkaido Univ 44:175–188

    Google Scholar 

  • Cho HK, Miyamoto T, Takahashi H, Hong SG, Kim JJ (2007) Damage to Abies koreana seeds on Mount Halla, Korea. Can J For Res 37:371–382

    Article  Google Scholar 

  • Coxson DS, Parkinson D (1987) Winter respiratory activity in aspen woodland forest floor litter and soils. Soil Biol Biochem 19:49–59

    Article  Google Scholar 

  • Cunfer BM, Bruehl GW (1973) Role of basidiospores as propagules and observations on sporophores of Typhula idahoensis. Phytopathology 63:115–120

    Article  Google Scholar 

  • Deverall BJ (1968) Psychropiles. In: Ainsworth GC, Sussman AS (eds) The fungi an advanced treatise, vol III, The fungal population. Academic, New York, pp 129–135

    Google Scholar 

  • Eckblad FE (1978) Soppøkologi. Universitesforl, Oslo, 158 pp

    Google Scholar 

  • Gaudet DA, Bhalla MK (1988) Survey for snow mold diseases of winter cereals in central and northern Alberta, 1983–87. Can Plant Dis Surv 68:15–22

    Google Scholar 

  • Gossen BD, Reiter WW (1989) Incidence and severity of snow molds on winter cereals in Saskatchewan, 1985–1988. Can Plant Dis Surv 69:17–19

    Google Scholar 

  • Gossen BD, Hsiang T, Murray T (2001) Managing snow mold diseases of winter cereals and turf. In: Iriki N, Gaudet DA, Tronsmo AM, Matsumoto N, Yoshida M, Nishimune A (eds) Low temperature plant microbe interactions under snow. Hokkaido National Agricultural Experiment Station, Sapporo, pp 181–192

    Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Gudleifsson BE (2013) Climatic and physiological background of ice encasement damage of herbage plants. In: Imai R, Yoshida M, Matsumoto N (eds) Plant and microbe adaptations to cold in a changing world. Springer, New York, pp 63–72

    Chapter  Google Scholar 

  • Hakamata T, Noshiro M, Hirashima T, Nose I (1978) Investigation of actual condition on the winter killing of pasture species in the Nemuro-Kushiro district: exploration of factors by the quantification no. 1. J Jpn Soc Grassl Sci 23:280–288 (in Japanese)

    Google Scholar 

  • Harder PR, Troll J (1973) Antagonism of Trichoderma spp. to sclerotia of Typhula incarnata. Plant Dis Rep 57:924–926

    Google Scholar 

  • Hintikka V (1964) Psychrophilic basidiomycetes decomposing forest litter under winter conditions. Commun Inst For Fenn 59(2):1–20

    Google Scholar 

  • Hori S (1934) An old record on snow-scald of winter cereals. J Plant Prot 21:165–166 (in Japanese)

    Google Scholar 

  • Hoshino T (2003) Predators of Typhulaceae sclerotia. Rishiri Kenkyu 22:7–8 (in Japanese)

    Google Scholar 

  • Hoshino T, Matsumoto N (2012) Cryophilic fungi to denote fungi in the cryosphere. Fungal Biol Rev 26:102–105

    Article  Google Scholar 

  • Hoshino T, Tojo M, Kanda H, Tronsmo AM (2001) Ecological role of fungal infections of moss carpet in Svalbard. Mem Natl Inst Polar Res Spec Issue 54:507–513

    Google Scholar 

  • Hoshino T, Saito I, Tronsmo AM (2003) Two snow mold fungi from Svalbard. Lidia 6:30–32

    Google Scholar 

  • Hoshino T, Yumoto I, Tronsmo AM (2006) New findings of snow mold fungi from Greenland. Medd Grønl Biosci 56:89–94

    Google Scholar 

  • Hoshino T, Tronsmo AM, Yumoto I (2008) Snow mold fungus, Typhula ishikariensis group III from Arctic Norway, can grow at a sub-lethal temperature after freezing stress and during flooding. Sommerfeltia 31:125–131

    Article  Google Scholar 

  • Hoshino T, Xiao N, Tkachenko OB (2009) Cold adaptation in phytopathogenic fungi causing snow mold. Mycoscience 50:26–38

    Article  Google Scholar 

  • Hoshino T, Terami F, Tkachenko OB, Tojo M, Matsumoto N (2010) Mycelial growth of the snow mold fungus, Sclerotinia borealis, improved at low water potentials: an adaptation to frozen environments. Mycoscience 51:98–103

    Article  Google Scholar 

  • Hsiang T, Matsumoto N, Millett SM (1999) Biology and management of Typhula snow molds of turfgrass. Plant Dis 83:788–798

    Article  Google Scholar 

  • Humphrey CJ, Siggers PV (1933) Temperature relations of wood-destroying fungi. J Agric Res 47:997–1008

    Google Scholar 

  • Ichihashi Y, Masuya H, Kubono T (2005) Pathogenicity of two fungi isolated from decayed beechnuts (Fagus crenata Blume) in Japan. In: Abstracts of the 116th Japanese Forestry Society Congress, Hokkaido University, Sapporo, March 2005 (in Japanese)

    Google Scholar 

  • Ichihashi Y, Masuya H, Kubono T (2008) Pathogenicity of Ciboria batschiana on seeds of Quercus serrata and Q. crispula in Japan. In: Abstracts of 119th the Japanese Forestry Society Congress, Tokyo University of Agriculture and Technology, Fuchu (in Japanese)

    Google Scholar 

  • Igarashi T, Cheng D (1988) Fungal damage caused by Racodium therryanum to regeneration of Japanese larch by natural seeding. Res Bull Exp For Hokkaido Univ 45:213–219

    Google Scholar 

  • Itsuki Y (1984) Studies on the snow mold disease of orchardgrass -with special reference to the physiology and ecology of Sclerotinia borealis. Master dissertation, Onihiro University of Agriculture and Veterinary Medicine

    Google Scholar 

  • Jackson N, Fenstermacher JM (1969) Typhula blight; its cause, epidemiology and control. J Sports Turf Res Inst 45:67–73

    Google Scholar 

  • Jacobs DL, Bruehl GW (1986) Saprophytic ability of Typhula incarnata, T. idahoensis, and T. ishikariensis. Phytopathology 76:695–698

    Article  Google Scholar 

  • Jennings DH, Lysek G (1999) Fungal biology: understanding the fungal lifestyle, 2nd edn. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Kristinsson H, Gudleifsson BE (1976) The activity of low-temperature fungi under the snow cover in Iceland. Acta Bot Isl 4:44–57

    Google Scholar 

  • Lebeau JB, Logsdon CE (1958) Snow mold of forage crops in Alaska and Yukon. Phytopathology 48:148–150

    Google Scholar 

  • Lipps PE (1980) The influence of temperature and water potential on asexual reproduction by Pythium spp. associated with snow rot of wheat. Phytopathology 70:794–797

    Article  Google Scholar 

  • Lipps PE, Bruehl GW (1978) Snow rot of winter wheat in Washington. Phytopathology 68:1120–1127

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (1999) Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80:1623–1631

    Article  Google Scholar 

  • Lipson DA, Schadt CW, Schmidt SK (2002) Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microb Ecol 43:307–314

    Article  CAS  PubMed  Google Scholar 

  • Ludley KE, Robinson CH (2008) ‘Decomposer’ basidiomycota in Arctic and Antarctic ecosystems. Soil Biol Biochem 40:11–29

    Article  CAS  Google Scholar 

  • MacBrayer JF, Cromack K Jr (1980) Effect of snow-pack on oak-litter breakdown and nutrient release in a Minnesota forest. Pedobiologia 20:47–54

    Google Scholar 

  • Mäkelä K (1981) Winter damage and low-temperature fungi on leys in north Finland in 1976–1979. Ann Agric Fenn 20:102–131

    Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, animals – fundamental and applied aspects. Naturwissenschaftern 94:77–99

    Article  CAS  Google Scholar 

  • Matsumoto N (2005) Adaptations of Typhula species to diverse winter climates. Biseibutsu Seitai 20:13–19 (in Japanese)

    Google Scholar 

  • Matsumoto N (2013) Snow mold. Hokkaido University Press, Sapporo (in Japanese)

    Google Scholar 

  • Matsumoto N, Araki T (1982) Field observation of snow mold pathogens of grasses under snow cover in Sapporo. Res Bull Hokkaido Natl Agric Exp Stn 135:1–10

    Google Scholar 

  • Matsumoto N, Tajimi A (1985) Field survival of sclerotia of Typhula incarnata and of T. ishikariensis biotype A. Can J Bot 63:1126–1128

    Article  Google Scholar 

  • Matsumoto N, Tajimi A (1988) Life history strategy in Typhula incarnata and T. ishikariensis biotypes A, B, and C as determined by sclerotium production. Can J Bot 66:2485–2490

    Article  Google Scholar 

  • Matsumoto N, Tronsmo AM, Shimanuki T (1996) Genetic and biological characteristics of Typhula ishikariensis isolates from Norway. Eur J Plant Pathol 102:431–439

    Article  Google Scholar 

  • Matsumoto N, Kawakami A, Izutsu S (2000) Distribution of Typhula ishikariensis biotype A isolates belonging to a predominant mycelial compatibility group. J Gen Plant Pathol 66:103–108

    Article  Google Scholar 

  • Moore TR (1983) Winter-time litter decomposition in a subarctic woodland. Arct Alp Res 15:413–418

    Article  Google Scholar 

  • Moore TR (1984) Litter decomposition in a subarctic spruce-lichen woodland, eastern Canada. Ecology 65:299–308

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murray T, Gaudet D (2013) Global change in winter climate and agricultural sustainability. In: Imai R, Yoshida M, Matsumoto N (eds) Plant and microbe adaptations to cold in a changing world. Springer, New York, pp 1–15

    Chapter  Google Scholar 

  • Nakajima T, Abe J (1994) Development of resistance to Microdochium nivale in winter wheat during autumn and decline of the resistance under snow. Can J Bot 72:1211–1215

    Article  Google Scholar 

  • Namikawa Y, Watanabe T, Saito I, Takasawa T (2004) Growth of the psychrophilic snow mold Sclerotinia borealis on the agar under xerophilic conditions. Res Bull Obihiro Univ 25:23–26 (in Japanese)

    Google Scholar 

  • Nissinen O (1996) Analyses of climatic factors affecting snow mould injury in first-year timothy (Phleum pretense L.) with special reference to Sclerotinia borealis. Acta Univ Oul A289:1–115

    Google Scholar 

  • Oke TR (1978) Boundary layer climates. Wiley, New York

    Book  Google Scholar 

  • Oshiman K (1999) Change in isolation frequency of Typhula ishikariensis from turfgrass under snow cover on golf courses. Mycoscience 40:373–375

    Article  Google Scholar 

  • Ozaki M (1979) Ecological study of Sclerotinia snow blight disease of orchardgrass. Bull Hokkaido Pref Agric Exp Stn 42:55–65 (in Japanese)

    Google Scholar 

  • Packer A, Clay K (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404:278–281

    Article  CAS  PubMed  Google Scholar 

  • Panasenko VT (1944) The ecology of molds. Microbiologia 13:158–170 (in Russian)

    Google Scholar 

  • Panasenko VT (1967) Ecology of microfungi. Bot Rev 33:189–215

    Article  Google Scholar 

  • Remsberg R, Hungerford CW (1933) Certain sclerotium diseases of grains and grasses. Phytopathology 23:863–874

    Google Scholar 

  • Robinson C (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Sahashi N, Kubono T, Shoji T (1995) Pathogenicity of Colletotrichum dematium from current-year beech seedlings exhibiting damping-off. Eur J For Pathol 25:145–151

    Article  Google Scholar 

  • Saito I (2001) Snow mold fungi in the Sclerotiniaceae. In: Iriki N, Gaudet DA, Tronsmo AM, Matsumoto N, Yoshida M, Nishimune A (eds) Low temperature plant microbe interaction under snow. Hokkaido National Agricultural Experiment Station, Sapporo, pp 37–48

    Google Scholar 

  • Sakai A (2003) Overwintering strategies in plants. From boreal to tropical rain forests. Hokkaido University Press, Sapporo (in Japanese)

    Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SK, Lipson DA (2004) Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils. Plant Soil 259:1–7

    Article  CAS  Google Scholar 

  • Schmidt SK, Wilson KL, Meyer AF, Gebauer MM, King AJ (2008) Phylogeny and ecophysiology of opportunistic “snow molds” from a subalpine forest ecosystem. Microb Ecol 56:681–687

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SK, Frankel SR, Wagner RL, Lynch RC (2013) Do growth kinetics of snow-mold fungi explain exponential CO2 fluxes through the snow? In: Imai R, Yoshida M, Matsumoto N (eds) Plant and microbe adaptations to cold in a changing world: proceedings of the plant and microbe adaptation to cold conference 2012. Springer, New York, pp 245–253

    Chapter  Google Scholar 

  • Schmidt-Nielsen S (1902) Uber einge psychrophile Mikrooganismen und ihr vorkommen. Cent Bart II Abt 9:145–147

    Google Scholar 

  • Schneider EF, Seaman WL (1987) Snow mold diseases and their distribution on winter wheat in Ontario in 1982–1984. Can Plant Dis Surv 67:35–39

    Google Scholar 

  • Scott SW (1984) Clover rot. Bot Rev 50:491–504

    Article  Google Scholar 

  • Sharratt BS, Baker DG, Wall DB, Skaggs RH, Ruschy DL (1992) Snow depth required for near steady-state soil temperatures. Agric For Meteorol 57:243–251

    Article  Google Scholar 

  • Smith JD (1975) Snow molds on winter cereals in northern Saskatchewan in 1974. Can Plant Dis Surv 55:91–96

    Google Scholar 

  • Smith JD (1987) Winter-hardiness and overwintering diseases of amenity turfgrasses with special reference to the Canadian Prairies, Technical Bull. 1987-12E. Agriculture Canada, Saskatoon

    Google Scholar 

  • Stark N (1972) Nutrient cycling pathways and litter fungi. Bioscience 22:355–360

    Article  CAS  Google Scholar 

  • Stokes JL (1963) General biology and nomenclature of psychrophilic micro-organisms. In: Gibbons NE (ed) Recent progress in microbiology. University of Tronto Press, Toronto, pp 187–192

    Google Scholar 

  • Takamatsu S (1989) Ecological study of Pythium snow rot of wheat and barley. Spec Bull Fukui Agric Exp Stn 9:1–135 (in Japanese)

    Google Scholar 

  • Taylor BR, Jones HG (1990) Litter decomposition under snow cover in a balsam fir forest. Can J Bot 68:112–120

    Article  Google Scholar 

  • Tojo M, Newsham KK (2012) Snow moulds in polar environments. Fungal Ecol 5:395–402

    Article  Google Scholar 

  • Tomiyama K (1955) Studies on the snow blight disease of winter wheat. Hokkaido Natl Agric Exp Bull 47:1–234

    Google Scholar 

  • Törmälä T, Eloranta A (1982) Decomposition of dead plant material in an abandoned field in Central Finland. Ann Bot Fenn 19:31–38

    Google Scholar 

  • Tronsmo AM, Hsiang T, Okuyama H, Nakajima T (2001) Low temperature diseases caused by Microdochium nivale. In: Iriki N, Gaudet DA, Tronsmo AM, Matsumoto N, Yoshida M, Nishimune A (eds) Low temperature plant microbe interactions under snow. Hokkaido National Experiment Station, Sapporo, pp 75–86

    Google Scholar 

  • Vaartnou H, Elliot CR (1969) Snowmolds on lawns and lawngrasses in northwest Canada. Plant Dis Report 53:891–894

    Google Scholar 

  • Vidal-Leiria M, Buckey H, van Uden N (1979) Distribution of the maximum temperature for growth among yeasts. Mycologia 71:493–501

    Article  CAS  PubMed  Google Scholar 

  • Wiese MV (1977) Compendium of wheat diseases. American Phytopathological Society, St. Paul

    Google Scholar 

  • Yang Y, Chen F, Hsiang T (2006) Fertile sporophore production of Typhula phacorrhiza in the field is related to temperatures near freezing. Can J Microbiol 52:9–15

    Article  PubMed  Google Scholar 

  • Ylimäki A (1962) The effect of snow cover on temperature conditions in the soil and overwintering of field crops. Ann Agric Fenn 1:192–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Matsumoto, N., Hsiang, T. (2016). Introduction. In: Snow Mold. Springer, Singapore. https://doi.org/10.1007/978-981-10-0758-3_1

Download citation

Publish with us

Policies and ethics