Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 55))

  • 1106 Accesses

Abstract

In this chapter we discuss the related work, where we present some of the ideas and implementations reported by other researchers working in areas closely related to this field. First we describe the various accelerator architectures and then, discuss FPGA based accelerators. We describe the FPGA architecture as well as the EDA tool flow followed while exploring HEBs in FPGAs. We discuss “bioinformatics” domain and the two important applications belonging to this domain. We show how these applications have benefited by FPGA-based acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, E., Rose, J.: The effect of LUT and cluster size on deep-submicron FPGA performance and density. IEEE Trans. Very Large Scale Integr. VLSI Syst. 12(3), 288–298 (2004)

    Google Scholar 

  2. Alpha-Data: Alpha-Data FPGA Boards. http://www.alpha-data.com/ (2015)

  3. ALTERA: Altera dsps. http://www.altera.com/technology/dsp/dsp-index.jsp (2015)

  4. Altera: Altera FPGAs. http://www.altera.com (2015)

  5. ALTERA: Altera mrams. http://www.altera.com/technology/memory/embedded/mem-embedded.html (2015)

  6. Altschul, S.F., Madden, T.L., Schffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped blast and psiblast: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

    Article  Google Scholar 

  7. Bajaj, C., Chowdhury, R., Siddavanahalli, V.: F2Dock: fast Fourier protein-protein docking. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(1), 45–58 (2011)

    Article  Google Scholar 

  8. Baker, M.: Next generation sequencing: adjusting to data overload. Nat. Methods 495–499 (2010)

    Google Scholar 

  9. Beauchamp, M.J., Hauck, S., Underwood, K.D., Hemmert, K.S.: Embedded floating-point units in FPGAs. In: ACM/SIGDA International Symposium on FPGAs (2006)

    Google Scholar 

  10. Bharat, S., Herbordt, M.C.: GPU acceleration of a production molecular docking code. In: GPGPU (2009)

    Google Scholar 

  11. Boisvert, S., Laviolette, F., Corbeil, J.: Simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J. Comput. Biol. 17(11), 1519–1533 (2010)

    Article  MathSciNet  Google Scholar 

  12. Bradnam, K.R., Fass, J.N., Alexandrov, A., Baranay, P., et al.: Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaSci. 2(1) (2013)

    Google Scholar 

  13. Brown, S., Rose, J.: Architecture of FPGAs and CPLDs: a tutorial. IEEE Des. Test Comput. 13, 42–57 (1996)

    Article  Google Scholar 

  14. Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I.A., Belmonte, M.K., Lander, E.S., Nusbaum, C., Jaffe, D.B.: ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res. 18(5), 810–820 (2008)

    Article  Google Scholar 

  15. CADENCE: Tensilica customizable processors. http://ip.cadence.com/ipportfolio/tensilica-ip (2015)

  16. Che, S., Li, J., Sheaffer, J., Skadron, K., Lach, J.: Accelerating compute-intensive applications with gpus and fpgas. In: Symposium on Application Specific Processors, 2008. SASP 2008 (2008)

    Google Scholar 

  17. Chen, R., Li, L., Weng, Z.: ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1), 80–87 (2003)

    Article  Google Scholar 

  18. Chen, Y., Souaiaia, T., Chen, T.: PerM: efficient mapping of short sequencing reads with periodic full sensitive spaced seeds. Bioinformatics 25(19), 2514–2521 (2009)

    Article  Google Scholar 

  19. Chikhi, R.: Monument assembler. http://www.irisa.fr/symbiose/people/rchikhi/monument.html (2015)

  20. Chikhi, R., Rizk, G.: Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter. In: Raphael, B., Tang, J. (eds.) Algorithms in Bioinformatics. Lecture Notes in Computer Science, vol. 7534, pp. 236–248. Springer, Berlin Heidelberg (2012)

    Chapter  Google Scholar 

  21. Chong, Y.J., Parameswaran, S.: Flexible multi-mode embedded floating-point unit for field programmable gate arrays. In: ACM/SIGDA International Symposium on FPGAs (2009)

    Google Scholar 

  22. Chung, E., Milder, P., Hoe, J., Mai, K.: Single-chip heterogeneous computing: does the future include custom logic, FPGAs, and GPGPUs? In: Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (2010)

    Google Scholar 

  23. Cohen, J.: Bioinformatics an introduction for computer scientists. ACM Comput. Surv. 36, 122–158 (2004)

    Article  Google Scholar 

  24. Cohen, J.: Computer science and bioinformatics. Commun. ACM 48, 72–78 (2005)

    Article  Google Scholar 

  25. Convey Computer: Convey GraphConstructor. http://www.conveycomputer.com (2015)

  26. David, Ritchie, W., Ritchie, D.: Hex 6.0 user manual protein docking using spherical polar fourier correlations

    Google Scholar 

  27. Devadoss, R., Paul, K., Balakrishnan, M.: p-qca: a tiled programmable fabric architecture using molecular quantum-dot cellular automata. J. Emerg. Technol. Comput. Syst. 7(3), 13:1–13:20 (2011)

    Google Scholar 

  28. El-Ghazawi, T., George, A.D., Gonzalez, I., Lam, H., Merchant, S., Saha, P., Smith, M., Stitt, G., Alam, N., El-Araby, E., Holland, B., Reardon, C.: Exploration of a Research Roadmap for Application Development and Execution on Field-Programmable Gate Array (FPGA)-Based Systems. Technical Report, Defense Technical Information Center (2008)

    Google Scholar 

  29. Fernandez, E., Najjar, W., Harris, E., Lonardi, S.: Exploration of short reads genome mapping in hardware. In: International Conference on FPL, pp. 360–363 (2010)

    Google Scholar 

  30. Fujinaga, M., Chernaia, M.M., Tarasova, N.I., Mosimann, S.C., James, M.N.: Crystal structure of human pepsin and its complex with pepstatin. Protein Sci. 4 (1995)

    Google Scholar 

  31. Gabb, H.A., Jackson, R.M., Sternberg, M.J.E.: Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272 (1997)

    Google Scholar 

  32. Gac, N., Mancini, S., Desvignes, M., Houzet, D.: High speed 3D tomography on CPU, GPU, and FPGA. EURASIP J. Embed. Syst. 2008, 5:1–5:12 (2008)

    Google Scholar 

  33. Gaisler: LEON processors. http://www.gaisler.com/index.php/products/processors/ (2015)

  34. Gao, H., Yang, Y., Ma, X., Dong, G.: Analysis of the effect of LUT size on FPGA area and delay using theoretical derivations. In: Sixth International Symposium on Quality of Electronic Design, 2005. ISQED 2005, pp. 370–374 (2005)

    Google Scholar 

  35. Grozea, C., Bankovic, Z., Laskov, P.: Facing the multicore-challenge. chap. FPGA vs. Multi-core CPUs vs. GPUs: Hands-on Experience with a Sorting Application, pp. 105–117. Springer-Verlag, Berlin, Heidelberg (2010)

    Google Scholar 

  36. Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins Struct., Funct., Bioinf. 47(4), 409–443 (2002)

    Article  Google Scholar 

  37. Hauck, S., DeHon, A.: Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation. Morgan Kaufmann, Systems on Silicon (2007)

    MATH  Google Scholar 

  38. Herbordt, M.C., VanCourt, T., Gu, Y., Sukhwani, B., Conti, A., Model, J., DiSabello, D.: Achieving high performance with FPGA-based computing. Computer 40(3), 50–57 (2007)

    Article  Google Scholar 

  39. Hernandez, D., François, P., Farinelli, L., Østerås, M., Schrenzel, J.: De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 18 (2008)

    Google Scholar 

  40. Hert, D.G., Fredlake, C.P., Barron, A.E.: Advantages and limitations of next-generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. Electrophoresis 29(23), 4618–4626 (2008)

    Article  Google Scholar 

  41. Homer, N., Merriman, B., Nelson, S.F.: BFAST: an alignment tool for large scale genome resequencing. PLoS ONE 4 (2009)

    Google Scholar 

  42. Inc., D.: Digilent FPGA Boards. https://www.digilentinc.com/ (2015)

  43. ITRS: The International Technology Roadmap for Semiconductors. http://www.itrs.net (2015)

  44. Jamieson, P., Rose, J.: Enhancing the area efficiency of fpgas with hard circuits using shadow clusters. IEEE Trans. VLSI Syst. 18(12), 1696–1709 (2010)

    Article  Google Scholar 

  45. Jenwitheesuk, E., Horst, J.A., Rivas, K.L., Voorhis, W.C.V., Samudrala, R.: Novel paradigms for drug discovery: computational multitarget screening. Trends Pharmacol. Sci. 29(2), 62–71 (2008)

    Article  Google Scholar 

  46. Kapre, N., DeHon, A.: Performance comparison of single-precision SPICE model-evaluation on FPGA, GPU, cell, and multi-core processors. In: International Conference on Field Programmable Logic and Applications, 2009. FPL 2009, pp. 65–72 (2009)

    Google Scholar 

  47. Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3(11), 935–949 (2004)

    Article  Google Scholar 

  48. Knodel, O., Preusser, T., Spallek, R.: Next-generation massively parallel short-read mapping on FPGAs. In: IEEE International Conference on ASAP, pp. 195–201 (2011)

    Google Scholar 

  49. Kozakov, D., Brenke, R., Comeau, S.R., Vajda, S.: PIPER: an FFT-based protein docking program with pairwise potentials. Proteins (2006)

    Google Scholar 

  50. Kuon, I., Rose, J.: Measuring the gap between FPGAs and ASICs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(2), 203–215 (2007)

    Article  Google Scholar 

  51. Kuon, I., Rose, J.: Area and delay trade-offs in the circuit and architecture design of FPGAs. In: Proceedings of the 16th International ACM/SIGDA Symposium on Field Programmable Gate Arrays. FPGA ’08, pp. 149–158. ACM, New York, NY, USA (2008)

    Google Scholar 

  52. Kuon, I., Tessier, R., Rose, J.: FPGA architecture: survey and challenges. Found. Trends Electron. Des. Autom. 2, 135–253 (2008)

    Article  Google Scholar 

  53. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10 (2009)

    Google Scholar 

  54. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18(11), 1851–1858 (2008)

    Article  Google Scholar 

  55. Li, R., Li, Y., Kristiansen, K., Wang, J.: SOAP: short oligonucleotide alignment program. Bioinformatics 24(5), 713–714 (2008)

    Article  Google Scholar 

  56. Liu, Y., Schmidt, B., Maskell, D.: Parallelized short read assembly of large genomes using De Bruijn graphs. BMC Bioinf. 12(1), 354–363 (2011)

    Article  Google Scholar 

  57. Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., Tang, J., Wu, G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C., Cheung, D.W., Yiu, S.M., Peng, S., Xiaoqian, Z., Liu, G., Liao, X., Li, Y., Yang, H., Wang, J., Lam, T.W., Wang, J.: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1), 18 (2012)

    Article  Google Scholar 

  58. Mardis, E.R.: Next generation DNA sequencing methods. Ann. Rev. Genomics Hum. Genet. 9, 387–402 (2008)

    Article  Google Scholar 

  59. McCollum, J.M., Peterson, G.D., Cox, C.D., Simpson, M.L.: Accelerating gene regulatory network modeling using grid-based simulation. Simulation 80(4–5), 231–241 (2004)

    Article  Google Scholar 

  60. McInnes, C.: Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol. 11(5), 494–502 (2007)

    Google Scholar 

  61. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation sequencing data. Genomics 95(6), 315–327 (2010)

    Article  Google Scholar 

  62. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: J. Comput. Chem

    Google Scholar 

  63. Movahedi, N., Forouzmand, E., Chitsaz, H.: De novo co-assembly of bacterial genomes from multiple single cells. In: 2012 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1–5 (2012)

    Google Scholar 

  64. Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., et al.: A whole-genome assembly of Drosophila. Science 287(5461), 2196–2204 (2000)

    Article  Google Scholar 

  65. Nagarajan, N., Pop, M.: Sequence assembly demystified. In: Nature Reviews Genetics, pp. 157–167 (2013)

    Google Scholar 

  66. Ngai, T., Rose, J., Wilton, S.J.E.: An sram-programmable field-configurable memory. In: Proceedings of the IEEE Custom Integrated Circuits Conference, 1995, pp. 499–502 (1995)

    Google Scholar 

  67. NVIDIA: Nvidia GPGPU. http://www.nvidia.com (2015)

  68. Olson, C., Kim, M., Clauson, C., Kogon, B., Ebeling, C., Hauck, S., Ruzzo, W.: Hardware acceleration of short read mapping. In: IEEE Symposium on FCCM, pp. 161–168 (2012)

    Google Scholar 

  69. Parandeh-Afshar, H., Verma, A., Brisk, P., Ienne, P.: Improving fpga performance for carry-save arithmetic. IEEE Trans. Very Large Scale Integ. VLSI Syst. 18(4), 578–590 (2010)

    Google Scholar 

  70. Patel, S., Hwu, W.W.: Guest editors’ introduction: accelerator architectures. IEEE Micro 28(4), 4–12 (2008)

    Google Scholar 

  71. Pothineni, N., Kumar, A., Paul, K.: Exhaustive enumeration of legal custom instructions for extensible processors. In: VLSID ’08: Proceedings of the 21st International Conference on VLSI Design, pp. 261–266. IEEE Computer Society, Washington, DC, USA (2008)

    Google Scholar 

  72. QuickLogic: QuickLogic FPGAs. http://www.quicklogic.com/ (2015)

  73. Ritchie, D.W., Venkatraman, V.: Ultra-fast FFT protein docking on graphics processors. Bioinformatics 26(19), 2398–2405 (2010)

    Article  Google Scholar 

  74. Rizk, G., Lavenier, D.: Gassst: global alignment short sequence search tool. Bioinformatics 26(20), 2534–2540 (2010)

    Article  Google Scholar 

  75. Rose, J., Gamal, A.E., Member, S., Sangiovanni-vincentelli, A.: Architecture of field-programmable gate arrays: the effect of logic block functionality on area efficiency. Proc. IEEE 25, 1217–1225 (1990)

    Google Scholar 

  76. Sequencing, R.: 454 Sequencing. http://www.454.com/products/analysis-software/ (2015)

  77. Simpson, J., Wong, K., Jackman, S., Schein, J., Jones, S., Birol, I.: ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117 (2009)

    Article  Google Scholar 

  78. Singh, D.P., Czajkowski, T.S., Ling, A.C.: Harnessing the power of fpgas using altera’s opencl compiler. In: Hutchings, B.L., Betz, V. (eds.) FPGA, pp. 5–6. ACM (2013)

    Google Scholar 

  79. Smith, A.D., Xuan, Z., Zhang, M.Q.: Using quality scores and longer reads improves accuracy of solexa read mapping. BMC Bioinf. 9, 128 (2008)

    Article  Google Scholar 

  80. Smith, T., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(3), 195–197 (1981)

    Article  Google Scholar 

  81. Sternberg, M.J.E., Aloy, P., Gabb, H.A., Jackson, R.M., Moont, G., Querol, E., Aviles, F.X.: A computational system for modeling flexible protein-protein and protein-DNA docking. In: Proceedings of the 6th International Conference on Intelligent Systems for Molecular Biology, pp. 183–192 (1998)

    Google Scholar 

  82. Stone, J., Gohara, D., Shi, G.: Opencl: a parallel programming standard for heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66–73 (2010)

    Article  Google Scholar 

  83. Tabula: Tabula FPGAs. http://www.tabula.com/ (2015)

  84. Tang, W., Wang, W., Duan, B., Zhang, C., Tan, G., Zhang, P., Sun, N.: Accelerating millions of short reads mapping on a heterogeneous architecture with fpga accelerator. Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 0, pp. 184–187 (2012)

    Google Scholar 

  85. Venkatesh, G., Sampson, J., Goulding, N., Garcia, S., Bryksin, V., Lugo-Martinez, J., Swanson, S., Taylor, M.B.: Conservation cores: reducing the energy of mature computations. SIGARCH Comput. Archit. News 38(1), 205–218 (2010)

    Article  Google Scholar 

  86. Wilton, S.J.E.: Embedded memory in fpgas: recent research results. In: 1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 292–296 (1999)

    Google Scholar 

  87. Wilton, S.J.E., Rose, J., Vranesic, Z.: The memory/logic interface in fpgas with large embedded memory arrays. IEEE Trans. Very Large Scale Integr. VLSI Syst. 7(1), 80–91 (1999)

    Google Scholar 

  88. Wilton, S.J.E., Rose, J., Vranesic, Z.G.: Architecture of centralized field-configurable memory. In: Proceedings of the 1995 ACM Third International Symposium on Field-programmable Gate Arrays. FPGA ’95, pp. 97–103. ACM, New York, NY, USA (1995)

    Google Scholar 

  89. XILINX: Xilinx brams (2015)

    Google Scholar 

  90. XILINX: Xilinx core generator. http://www.xilinx.com/tools/coregen.htm (2015)

  91. XILINX: Xilinx dsps. http://www.xilinx.com/products/technology/dsp/ (2015)

  92. Xilinx: Xilinx FPGAs, ISE. http://www.xilinx.com (2015)

  93. XtremeData: XtremeData FPGA Boards. http://www.xtremedata.com/ (2015)

  94. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using De Bruijn graphs. Genome Res. 18(5), 821–829 (2008)

    Article  Google Scholar 

  95. Zhang, W., Jha, N.K., Shang, L.: A hybrid nano/cmos dynamically reconfigurable system—part i: Architecture. J. Emerg. Technol. Comput. Syst. 5(4), 16:1–16:30 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sharat Chandra Varma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Varma, B.S.C., Paul, K., Balakrishnan, M. (2016). Related Work. In: Architecture Exploration of FPGA Based Accelerators for BioInformatics Applications. Springer Series in Advanced Microelectronics, vol 55. Springer, Singapore. https://doi.org/10.1007/978-981-10-0591-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0591-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0589-3

  • Online ISBN: 978-981-10-0591-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics