Skip to main content

Nd3+ Ion as a Structural Probe in Studies of Selected Oxide Host Lattices: Coupling the Low-Temperature High-Resolution Spectroscopic Techniques with Microscopy

  • Conference paper
  • First Online:
Light-Matter Interactions Towards the Nanoscale

Abstract

In this paper we present the relationships between structural and spectroscopic investigations of neodymium ion dopant (Nd3+) in selected oxide host lattices with particular highlighting its role as a structural probe. The main goal is to get precious information about the symmetry and activator’s environment in the following different oxide host lattices like cubic Lu2O3 sesquioxide and molybdate compounds of tetragonal scheelite-type CdMoO4, monoclinic/cubic La2Mo2O9 (LAMOX) as well as cubic Y6MoO12, we met during research of new transparent ceramics. This choice gives us the opportunity to point out the usefulness of two techniques: the low-temperature high-resolution techniques applied to the 4I9/2 → 2P1/2 (around 432 nm) and 4I9/2 → 4F3/2 (around 875 nm) absorption transitions at 4.2 K and site-selective tuneable laser spectroscopy with OPO and Ti:Sapphire laser sources, applied to the 4F3/2 → 4I9/2 (around 900 nm) and 4F3/2 → 4I11/2 (around 1064 nm) emission transitions at 77 K. We hope that the results presented at the School will help the students to know how important is the role played by Nd3+ dopant not only as laser ion in near the infrared spectral region but also as structural probe for host lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chani VI, Yoshikawa A, Fukuda T (1999) Growth of Y3Al5O12: Nd fiber crystals by micro-pulling-down technique. J Cryst Growth 204:155–162

    Article  ADS  Google Scholar 

  2. Ikesue A, Furusato I, Kamata KJ (1995) Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method. Am Ceram Soc 78:225–228

    Article  Google Scholar 

  3. Bishop B (2009) Northrop Grumman scales new heights in electric laser power achieves 100 kW from a solid-state lase. Globe Newswire

    Google Scholar 

  4. Lupei V (2009) Ceramic laser materials and the prospect for high power lasers. Opt Mater 31(5):701–706

    Article  ADS  Google Scholar 

  5. Sanghera J, Kim W, Villalobos G, Shaw B, Baker C, Frantz J, Sadowski B, Aggarwal I (2013) Ceramic laser materials: past and present. Opt Mater 35:693–699

    Article  ADS  Google Scholar 

  6. Ikesue A, Aung YL, Lupei V (2013) Ceramic lasers. Cambridge University, New York

    Book  Google Scholar 

  7. Kong LB, Huang Y, Que W, Zhang T, Li S, Zhang J, Dong Z, Tang D (2015) Transparent ceramics. Springer

    Book  Google Scholar 

  8. Goldstein A, Krell A (2016) Transparent ceramics at 50: progress made and further prospects. J Am Ceram Soc 99(10):3173–3197

    Article  Google Scholar 

  9. Esposito L, Epicer T, Serantoni M, Piancastelli A, Alderighi D, Pirri A, Toci G, Vannini M, Anghel S, Boulon G (2012) Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications. J Eur Ceram Soc 32:2273–2281

    Article  Google Scholar 

  10. Yagi H, Yanagitani T, Takaichi K, Ueda K, Kaminskii AA (2007) Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics. Opt Mater 29:1258–1262

    Article  ADS  Google Scholar 

  11. Epicier T, Boulon G, Zhao W, Guzik M, Jiang B, Ikesue A, Esposito L (2012) Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM. J Mater Chem 22:18221–18229

    Article  Google Scholar 

  12. Zhao W, Anghel S, Mancini C, Amans D, Boulon G, Epicier T, Shi Y, Feng XQ, Pan YB, Chani V, Yoshikawa A (2011) Ce3+ dopant segregation in Y3Al5O12 optical ceramics. Opt Mater 33:684–687

    Article  ADS  Google Scholar 

  13. Pejchal J, Babin V, Beitlerova A, Kucerkova R, Panek D, Barta J, Cuba V, Yamaji A, Kurosawa S, Mihokova E, Ito A, Goto T, Nikl M, Yoshikawa A (2016) Luminescence and scintillation properties of Lu3Al5O12 nanoceramics sintered by SPS method. Opt Mater 53:54–63

    Article  ADS  Google Scholar 

  14. Li J, Sah S, Groza M, Pan Y, Burger A, Kenarangui R, Chen W (2017) Optical and scintillation properties of Ce3+-doped LuAG and YAG transparent ceramics: a comparative study. J Am Ceram Soc 100:150–156

    Article  Google Scholar 

  15. Lu J, Takaichi K, Uematsu T, Shirakawa A, Musha M, Ueda K, Yagi H, Yanagitani T, Kaminskii AA (2002) Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic. Appl Phys Lett 81(23):4324–4326

    Article  ADS  Google Scholar 

  16. Fukabori A, Chani V, Pejchal J, Kamada K, Yoshikawa A, Ikegami T (2011) Fundamental optical constants of Nd-doped Y2O3 ceramic and its scintillation characteristics. Opt Mater 34:452–456

    Article  ADS  Google Scholar 

  17. Futami Y, Yanagida T, Fujimoto Y, Pejchal J, Sugiyama M, Kurosawa S, Yokota Y, Ito A, Yoshikawa A, Goto T (2013) Optical and scintillation properties of Sc2O3, Y2O3 and Lu2O3 transparent ceramics synthesized by SPS method. Radiat Meas 55:136–140

    Article  Google Scholar 

  18. An L, Ito A, Zhang J, Tang D, Goto T (2014) Highly transparent Nd3+:Lu2O3 produced by spark plasma sintering and its laser oscillation. Opt Mater Express 4(7):1420–1426

    Article  ADS  Google Scholar 

  19. Alombert-Goget G, Guyot Y, Guzik M, Boulon G, Ito A, Goto T, Yoshikawa A, Kikuchi M (2015) Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the spark plasma sintering (SPS) method. Part 1: structural, thermal conductivity and spectroscopic characterization. Opt Mater 41:3–11

    Article  ADS  Google Scholar 

  20. Toci G, Vannini M, Ciofini M, Lapucci A, Piri A, Ito A, Goto T, Yoshikawa A, Ikesue A, Alombert-Goget G, Guyot Y, Boulon G (2015) Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the spark plasma sintering (SPS) method. Part 2: first laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method. Opt Mater 41:12–16

    Article  ADS  Google Scholar 

  21. Krsmanović Whiffen RM, Bregiroux D, Viana B (2017) Nanostructured Y2O3 ceramics elaborated by spark plasma sintering of nanopowder synthesized by PEG assisted combustion method: the influence of precursor morphological characteristics. Ceram Int 43:15834–15841

    Article  Google Scholar 

  22. Sanghera J, Kim W, Villalobos G, Shaw B, Baker C, Frantz J, Sadowski B, Aggarwal I (2012) Ceramic laser materials. Materials 5:258–277

    Article  ADS  Google Scholar 

  23. Sh Akchurin M, Basiev TT, Demidenko AA, Doroshenko ME, Fedorov PP, Garibin EA, Gusev PE, Kuznetsov SV, Krutov MA, Mironov IA, Osiko VV, Popov PA (2013) CaF2:Yb laser ceramics. Opt Mater 35:444–450

    Article  ADS  Google Scholar 

  24. Aubry P, Bensalah A, Gredin P, Patriarche G, Vivien D, Mortier M (2009) Synthesis and optical characterizations of Yb-doped CaF2 ceramics. Opt Mater 31:750–753

    Article  ADS  Google Scholar 

  25. Li W, Mei B, Song J (2015) Nd, Yb3+-co-doped SrF2 laser ceramics. Opt Mater 47:108–111

    Article  ADS  Google Scholar 

  26. du Merac MR, Kleebe H-J, Mueller MM, Reimanis IE (2013) Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel. J Am Ceram Soc 96(11):3341–3365

    Article  Google Scholar 

  27. Valiev D, Khasanov O, Dvilis E, Stepanov S, Polisadova E, Paygin V (2018) Luminescent properties of MgAl2O4 ceramics doped with rare earth ions fabricated by spark plasma sintering technique. Ceram Int 44(17):20768–20773

    Article  Google Scholar 

  28. Chen CF, Doty Ronald FP, Houk JT, Loutfy Heather RO, Volz M, Yang P (2010) Characterizations of a hot pressed polycrystalline spinel:Ce scintillator. J Am Ceram Soc 93(8):2399–2402

    Article  Google Scholar 

  29. Mirov S, Fedorov V, Moskalev I, Martyshkin D, Kim C (2010) Progress in Cr2+ and Fe2+ doped mid-IR laser materials. Laser Photonics Rev 4:121–141

    Article  Google Scholar 

  30. Higashi Y, Nakao H, Shirakawa A, Ueda K, Kaminskii AA, Kuretake S, Kintaka Y, Murayama K, Tanaka N (2015) Femtosecond mode-locked Nd3+-doped Ba (Zr,Mg,Ta)O3 ceramic laser. Opt Lett 40(16):3818–3821

    Article  ADS  Google Scholar 

  31. Kuretake S, Tanaka N, Kintaka Y, Kageyama K, Nakao H, Shirakawa A, Ueda K, Kaminskii AA (2014) Nd-doped Ba(Zr,Mg,Ta)O3 ceramics as laser materials. Opt Mater 36(3):645–649

    Article  ADS  Google Scholar 

  32. Wen Z, Ma C, Zhao C, Tang F, Cao Z, Cao Z, Yuan X, Cao Y (2018) Fabrication and optical properties of Pr3+ −doped Ba (Sn, Zr,Mg,Ta)O3 transparent ceramic phosphor. Opt Lett 43(11):2438–2441

    Article  ADS  Google Scholar 

  33. Boulon G, Metrat G, Muhlstein N, Brenier A, Kokta MR, Kravchik L, Kalisky Y (2003) Efficient diode-pumped Nd:KGd(WO4)2 laser grown by top nucleated floating crystal method. Opt Mater 24:377–383

    Article  ADS  Google Scholar 

  34. Brenier A, Bourgeois F, Metrat G, Muhlstein N, Boulon G (2001) Spectroscopic properties at 1.351 μm of Nd3+-doped KY(WO4)2 and KGd(WO4)2 single crystals for Raman conversion. Opt Mater 16:207–211

    Article  ADS  Google Scholar 

  35. Merat G, Muhlstein N, Brenier A, Boulon G (1997) Growth by the induced nucleated floating crystal (INFC) method and spectroscopic properties of KY1-xNdx(WO4)2 laser materials. Opt Mater 8:75–82

    Article  ADS  Google Scholar 

  36. Silvestre O, Pujol MC, Gueell F, Aguilo M, Diaz F, Brenier A, Boulon G (2007) Crystal growth and spectroscopic analysis of codoped (Ho,Tm):KGd(WO4)2. Appl Phys B Lasers Opt 87(1):111–117

    Article  ADS  Google Scholar 

  37. Pujol MC, Guell F, Mateos X, Gavalda J, Sole R, Massons J, Aguilo M, Diaz F, Boulon G, Brenier A (2002) Crystal growth and spectroscopic characterization of Tm3+-doped KYb(WO4)2 single crystals. Phys Rev B Condens Matter 66(14):144304-1–144304-8

    Article  ADS  Google Scholar 

  38. Guzik M, Alombert-Goget G, Guyot Y, Pejchal J, Yoshikawa A, Ito A, Goto T, Boulon G (2016) Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3 sesquioxide either as ceramics or crystal. J Lumin 169:606–611

    Article  Google Scholar 

  39. Guzik M, Tomaszewicz E, Guyot Y, Legendziewicz J, Boulon G (2015) Structural and spectroscopic characterizations of new Cd1-3xNd2xxMoO4 scheelite-type molybdates with vacancies as potential optical materials. J Mater Chem C 3:4057–4069

    Article  Google Scholar 

  40. Guzik M, Bieza M, Tomaszewicz E, Guyot Y, Boulon G (2014) Development of Nd3+-doped monoclinic Dimolybdates La2Mo2O9 as optical materials. Z Naturforsch 69b:193–204

    Article  Google Scholar 

  41. Guzik M, Bieza M, Tomaszewicz E, Guyot Y, Zych E, Boulon G (2015) Nd3+ dopant influence on the structural and spectroscopic properties of microcrystalline La2Mo2O9 molybdate. Opt Mater 41:21–31

    Article  ADS  Google Scholar 

  42. Sobota M, Sobota P, Bieza M, Guzik M, Tomaszewicz E, Guyot Y, Boulon G (2019) Influence of synthesis route and grain size on structural and spectroscopic properties of cubic Nd3+-doped Y6MoO12 nano and micro-powders as optical materials. Opt Mater 90:300–314

    Article  ADS  Google Scholar 

  43. Novoselov A, Yoshikawa A, Fukuda T (2004) The micro-pulling-down method: fast and economic solution for materials screening. Curr Top Cryst Growth Res 7:87–111

    Google Scholar 

  44. Yoshikawa A, Nikl M, Boulon G, Fukuda T (2007) Challenge and study for developing of novel single crystalline optical materials using micro-pulling-down method. Opt Mater 30:6–10

    Article  ADS  Google Scholar 

  45. Zagumennyi AI, Mikhailov VA, Shcherbakov IA (2004) Rare earth ion lasers –Nd3+. In: Webb CE, Jones JDC (eds) Handbook of laser technology and applications, vol. II: laser design ad laser systems. Institute of Physics Publishing, Bristol\Philadelphia

    Google Scholar 

  46. Guillot-Noël O, Viana B, Bellamy B, Gourier D, Zogo-MBoulou GB, Jandl S (2000) Spectroscopic evidence of inhomogeneous distribution of Nd3+ in YVO4, YPO4 and YAsO4 crystals. Opt Mater 13:427–437

    Article  ADS  Google Scholar 

  47. Guzik M, Siczek M, Lis TA, Pejchal J, Yoshikawa A, Ito A, Goto T, Boulon G (2014) Structural investigations of Lu2O3 as single crystal and polycrystalline transparent ceramic. Cryst Growth Des 14:3327–3334

    Article  Google Scholar 

  48. Ikesue A (2002) Polycrystalline Nd:YAG ceramics lasers. Opt Mater 19:183–187

    Article  ADS  Google Scholar 

  49. Sanghera J, Bayya S, Villalobos G, Kim W, Frantz J, Shaw B, Sadowski B, Miklos R, Baker C, Hunt M, Aggarwal I, Kung F, Reicher D, Peplinski S, Ogloza A, Langston P, Lamar C, Varmette P, Dubinskiy M, Sandre LDE (2011) Transparent ceramics for high-energy laser systems. Opt Mater 33:511–518

    Article  ADS  Google Scholar 

  50. Lupei A, Lupei V (2003) RE3+ pairs in garnets and sesquioxides. Opt Mater 24:181–189

    Article  ADS  Google Scholar 

  51. Boulon G, Lupei V (2007) Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals. J Lumin 125:45–54

    Article  Google Scholar 

  52. Lupei A, Lupei V, Taira T, Sato Y, Ikesue A, Gheorghe C (2003) Energy transfer processes of Nd3+ in Y2O3 ceramics. J Lumin 102–1032:72–76

    Article  Google Scholar 

  53. Boulon G (1971) Photoluminescence processes in bismuth ion activated polycrystalline rare earth oxides and orthovanadates, J. Phys. (Paris) 32, 333–347; Boulon, G.; Pedrini, C.; Guidoni, M.; Pannel, Ch.: kinetics of the bismuth(3+) ion luminogenic centers in crystals, J. Phys.(Paris) 36(3), 267–278 (1975)

    Google Scholar 

  54. Boulon G, Gaume-Mahn F, Pedrini C, Jacquier B, Janin J, Curie D (1973) Luminescence processes in bismuth (3+) centers. Lumin Cryst Mol Solut:530–537

    Google Scholar 

  55. Schamps J, Flament JP, Real F, Noiret I (2003) Ab initio simulation of photoluminescence: Bi3+ in Y2O3 (S6 site). Opt.Mater 24:221–230

    Article  ADS  Google Scholar 

  56. Réal F, Ordejón B, Vallet V, Flament J-P, Schamps J (2009) Improvement of the ab initio embedded cluster method for luminescence properties of doped materials by taking into account impurity induced distortions: the example of Y2O3:Bi3+. J Chem Phys 131:194501–194517

    Article  ADS  Google Scholar 

  57. Buijs M, Meyerink A, Blasse G (1987) Energy transfer between Eu3+ ions in a lattice with two different crystallographic sites:Y2O3:Eu3+, Gd2O3:Eu3+ and Eu2O3. J Lumin 37:9–20

    Article  Google Scholar 

  58. Zych E, Karbowiak M, Domagala K, Hubert S (2002) Analysis of Eu emission from different sites in Lu2O3. J Alloys Compd 341:381–384

    Article  Google Scholar 

  59. Daldosso M, Sokolnicki J, Kepinski L, Legendziewicz J, Speghini A, Bettinelli M (2007) Preparation and optical properties of nanocrystalline Lu2O3:Eu3+ phosphors. J Lumin 120–123:858–861

    Article  Google Scholar 

  60. Legendziewicz J, Sokolnicki J (2008) Spectroscopy and structural characteristic of Yb3+ and Nd3+ ions doped nanostructured Lu2O3 and sol–gel derived silica host materials. J Alloys Compd 451:600–605

    Article  Google Scholar 

  61. Petermann K, Huber G, Forniasero L, Kuch S, Mix E, Peters V, Basun SA (2000) Rare-earth-doped sesquioxides. J Lumin 87–89:973–975

    Article  Google Scholar 

  62. Guyot Y, Guzik M, Alombert-Goget G, Pejchal J, Yoshikawa A, Ito A, Goto T, Boulon G (2015) Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or ascrystal. J Lumin 170:513–519

    Article  Google Scholar 

  63. Lupei A, Lupei V, Gheorghe C (2013) Electronic structure of Sm3+ ions in YAG and cubic sesquioxide ceramics. Opt Mater 36:419–424

    Article  ADS  Google Scholar 

  64. Gheorghe C, Lupei A, Voicu T, F.M., C. (2014) Emission properties and site occupation of Sm3+ ion doped Lu2O3 translucent ceramics. J Alloys Compd 588:388–393

    Article  Google Scholar 

  65. Minowa M, Itakura K, Moriyama S, Ootani W (1992) Measurement of the property of cooled Lead Molybdate as a scintillator. Nucl Instrum Methods Phys Res, Sect A 320:500–503

    Article  ADS  Google Scholar 

  66. Sczancoski JC, Bomio MDR, Cavalcante LS, Joya MR, Pizani PS, Varela JA, Longo E, Li S, Andrés JA (2009) Morphology and blue photoluminescence emission of PbMoO4 processed in ConventionalHydrothermal. J Phys Chem C 113:5812–5822

    Article  Google Scholar 

  67. Hizhnyi YA, Nedilko SG (2003) Investigation of the luminescent properties of pure and defect Lead tungstate crystals by electronic structure calculations. J Lumin 102−103:688–693

    Article  Google Scholar 

  68. Kudo, Steinberg MA, Bard J, Campion A, Fox MF, Mallouk TE, Webber SE, White JM (1990) Photoactivity of ternary Lead-group VIB oxides for hydrogen and oxygen evolution. Catal Lett 5:61–66

    Article  Google Scholar 

  69. Chernov S, Deych R, Grigorieva L, Millers D (1997) Luminescence and transient optical absorption in CdWO4. Mater Sci Forum 239:299

    Article  Google Scholar 

  70. Godlewska P, Tomaszewicz E, Macalik L, Hanuza J, Ptak M, Tomaszewski PE, Maczka M, Ropuszynska-Robak P (2013) Correlation between the structural and spectroscopic parameters for Cd1-3xGd2xxMoO4 solid solutions where, denotes cationic vacancies. Mater Chem Phys 139:890–896

    Google Scholar 

  71. Kobayashi M, Usuki Y, Ishii M, Yazawa T, Hara K, Tanaka M, Nikl M, Nitsch K (1997) Improvement in transmittance and decay time of PbWO4 scintillating crystals by La-doping. Nucl Instrum Methods Phys Res, Sect A 399:261

    Article  ADS  Google Scholar 

  72. Kobayashi M, Yazawa T, Hara K, Tanaka M, Nikl M, Baccaro S, Cecilia A, Diemoz M, Dafinei I (1998) Improvement in radiation hardness of PbWO4 scintillating crystals by La-doping. Nucl Instrum Methods Phys Res, Sect A 404:149–156

    Article  ADS  Google Scholar 

  73. Guzik M, Tomaszewicz E, Guyot Y, Legendziewicz J, Boulon G (2015) Eu3+ luminescence from different sites in a scheelite-type cadmium molybdate red phosphor with vacancies. J Mater Chem C 3:8582–8594

    Article  Google Scholar 

  74. Guzik M, Tomaszewicz E, Guyot Y, Legendziewicz J, Boulon G (2016) Spectroscopic properties, concentration quenching and Yb3+ site occupations in vacancied scheelite-type molybdates. J Lumin 169:755–764

    Article  Google Scholar 

  75. Guzik M, Tomaszewicz E, Guyot Y, Legendziewicz J, Boulon G (2012) Structural and spectroscopic characterizations of two promising Nd-doped monoclinic or tetragonal laser tungstates. J Mater Chem 22:14896

    Article  Google Scholar 

  76. Georges S, Goutenoire F, Altorfer F, Sheptyakov D, Fauth F, Suard E, Lacorre P (2003) Thermal, structural and transport properties of the fast oxide-ion conductors La2xRxMo2O9 (R=Nd, Gd, Y). Solid State Ionics 161:231–241

    Article  Google Scholar 

  77. Kuang W, Fan Y, Yao K, Chen Y (1998) Preparation and characterization of ultrafine rare earth molybdenum complex oxide particles. J Solid State Chem 140:354–360

    Article  ADS  Google Scholar 

  78. Fournier JP, Fournier J, Kohlmuller R (1970) Étude de systèmes La2O3-MoO3, Y2O3-MoO3 et des phases Ln6MoO12. Bull Soc Chim Fr 12:4277

    Google Scholar 

  79. Lacorre P, Retoux R (1997) First direct synthesis by high energy ball milling of a new lanthanum Molybdate. J Solid State Chem 132:443–446

    Article  ADS  Google Scholar 

  80. Goutenoire F, Isnard O, Retoux R, Lacorre P (2000) Crystal structure of La2Mo2O9 a new fast oxide-ion conductor. Chem Mater 12:2575–2580

    Article  Google Scholar 

  81. Goutenoire F, Isnard O, Suard E, Bohnke O, Laligant Y, Retoux R, Laccore P (2011) Structural and transport characteristics of the LAMOX family of fast oxide-ion conductors, based on lanthanum molybdenum oxide La2Mo2O9. J Mater Chem 11:119–124

    Article  Google Scholar 

  82. Arulraj A, Goutenoire F, Tabellout M, Bohnke O, Lacorre P (2002) Synthesis and charaterization of the anionic conductor system La2Mo2O9-0.5xFx (x=0.02-0.3). Chem Mater 14:2492

    Article  Google Scholar 

  83. Evans IR, Howard JAK, Evans JSO (2005) The crystal structure of α-La2Mo2O9 and the structural origin of the oxide ion migration pathway. Chem Mater 17:4074–4077

    Article  Google Scholar 

  84. Li H, Pu X, Yin J, Wang X, Yao S, Noh HM, Jeong JH (2016) Effect of crystallite size and crystallinity on photoluminescence properties and energy transfer of Y6MoO12:Eu. J Am Ceram Soc 99(3):954–961

    Article  Google Scholar 

  85. Bieza M, Guzik M, Tomaszewicz E, Guyot Y, Boulon G (2017) Cubic Yb3+-activated Y6MoO12 micro-powder e optical material operating in NIR region. Opt Mater 63:3–12

    Article  ADS  Google Scholar 

  86. Zhang X, Zhang Y, Gong H, Zhao X, Wang C, Zhu H (2013) Synthesis, characterization and optical properties of Y6-xSmxMoO12+σ composite/compounds pigments with high near-infrared reflectance. Adv Mater Res 602-604:102–106

    Article  Google Scholar 

  87. George G, Vishnu VS, Reddy MLP (2011) The synthesis, characterization and optical properties of silicon and praseodymium doped Y6MoO12 compounds: environmentally benign inorganic pigments with high NIR reflectance. Dyes Pigments 88:109–115

    Article  Google Scholar 

  88. Zhao X, Zhang Y, Huang Y, Gong H, Zhao J (2015) Synthesis and characterization of neodymium doped yttrium molybdate high NIR reflective nano pigments. Dyes Pigments 116:119–123

    Article  Google Scholar 

  89. Kaminskii AA (1996) Crystaline lasers: Pysical processes and operating schemes. CRS Press

    Google Scholar 

  90. Schildhammer D, Fuhrmann G, Petschnig L, Penner S, Kogler M, Gotsch T, Schaur A, Weinberger N, Saxer A, Schottenberger H, Huppertz H (2016) Synthetic access to cubic rare earth molybdenum oxides RE6MoO12−δ (RE = Tm–Lu) representing a new class of ion conductors. Chem Mater 28:7487–7495

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Science Centre of Poland (NCN) under grant HARMONIA 8 No UMO-2016/22/M/ST5/00546. This work was also developed within the scope of the project POLONIUM from the Polish National Agency for Academic Exchange (NAWA) as well as the Ministries of Europe and Foreign Affairs (MEAE) and Higher Education, Research and Innovation (MESRI), for scientific exchange between Institute Light Matter (iLM), University Claude Bernard Lyon1 in France and Faculty of Chemistry, University of Wroclaw in Poland. Also help of the French Embassy in Warsaw (French Government scholarship for research stages of M. Guzik, M. Sobota and P. Sobota) at UCBLyon1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guzik, M. et al. (2022). Nd3+ Ion as a Structural Probe in Studies of Selected Oxide Host Lattices: Coupling the Low-Temperature High-Resolution Spectroscopic Techniques with Microscopy. In: Cesaria, M., Calà Lesina, A., Collins, J. (eds) Light-Matter Interactions Towards the Nanoscale. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2138-5_11

Download citation

Publish with us

Policies and ethics