Skip to main content

Multiferroics for Detection of Magnetic and Electric Fields

  • Conference paper
  • First Online:
Book cover Advanced Nanomaterials for Detection of CBRN

Abstract

Muliferroic materials are characterized by two or more primary ferroic orders: ferroelectric, ferromagnetic and ferroelastic. In multiferroics the coupling occurs between the magnetic (ferromagnetic or antiferromagnetic) and electric (ferroelectric) subsystems. This enables control of the dielectric polarization P by a magnetic field H and the manipulation of magnetization M by an electric field E, allowing design of a wide range of novel electronic devices for various sensing, memory, logical, energy, biomedical and other applications. I describe here our efforts to develop new class of single-phase muliferroic materials where a single element, the manganese, is responsible for both the ferroelectric and magnetic properties, which guarantees strong coupling which is necessary for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hill NA (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104:6694

    Article  Google Scholar 

  2. Palneedi H, Annapureddy V, Priya S, Ryu J (2016) Status and perspectives of multiferroic magneto-electric composite materials and applications. Actuators 5:9

    Article  Google Scholar 

  3. Dzhezherya YI, Khrebtov AO, Kruchinin SP (2018) Sharp-pointed susceptibility of ferromagnetic films with magnetic anisotropy inhomogeneous in thickness. Int J Mod Phys B 32:1840034

    Article  ADS  Google Scholar 

  4. Dzhezherya Y, Novak IY, Kruchinin S (2010) Orientational phase transitions of lattice of magnetic dots embedded in a London type superconductors. Supercond Sci Technol 23:1050111

    Article  Google Scholar 

  5. Bibes M, Barthelemy A (2008) Towards a magnetoelectric memory. Nat Mater 7:425

    Article  ADS  Google Scholar 

  6. Dabrowski B, Chmaissem O, Mais J, Kolesnik S, Jorgensen JD, Short S (2003) Tolerance factor rules for Sr1−xyCaxBayMnO3 perovskites. J Solid State Chem 170:154

    Article  ADS  Google Scholar 

  7. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751

    Article  ADS  Google Scholar 

  8. Chmaissem O, Dabrowski B, Kolesnik S, Mais J, Brown DE, Kruk R, Prior P, Pyles B, Jorgensen JD (2001) Relationship between structural parameters and Néel temperature in Sr1−xCaxMnO3 (0 ≤ x ≤ 1) and Sr1−yBayMnO3 (y ≤ 0.2). Phys Rev B 64:134412

    Google Scholar 

  9. Baszczuk A, Dabrowski B, Avdeev M (2015) High temperature neutron diffraction studies of PrInO3 and the measures of perovskite structure distortion. Dalt Trans 44:10817

    Article  Google Scholar 

  10. Pratt DK, Lynn JW, Mais J, Chmaissem O, Brown DE, Kolesnik S, Dabrowski B (2014) Neutron scattering studies of the ferroelectric distortion and spin dynamics in the type-1 multiferroic perovskite Sr0.56Ba0.44MnO3. Phys Rev B 90:140401

    Google Scholar 

  11. Somaily H, Kolesnik S, Mais J, Brown D, Chapagain K, Dabrowski B, Chmaissem O (2018) Strain-induced tetragonal distortions and multiferroic properties in polycrystalline Sr1−xBaxMnO3 (x = 0.43–0.45) perovskites. Phys Rev Mater 2:054408

    Google Scholar 

  12. Chapagain K, Brown DE, Kolesnik S, Lapidus S, Haberl B, Molaison J, Lin C, Kenney-Benson C, Park C, Pietosa J, Markiewicz E, Andrzejewski B, Lynn JW, Rosenkranz S, Dabrowski B, Chmaissem O (2019) Tunable multiferroic order parameters in Sr1−xBaxMn1−yTiyO3. Phys Rev Mater 3:084401

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish NCN through Grant No. 2018/31/B/ST5/03024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Dabrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dabrowski, B. (2020). Multiferroics for Detection of Magnetic and Electric Fields. In: Bonča, J., Kruchinin, S. (eds) Advanced Nanomaterials for Detection of CBRN. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2030-2_4

Download citation

Publish with us

Policies and ethics