Skip to main content

Mediation Analysis for Life Course Studies

  • Chapter
  • First Online:
Pathways to Health

Part of the book series: SpringerBriefs in Population Studies ((BRIEFSPOPULAT))

Abstract

The main aim of life course epidemiology is to elucidate the processes that link early life factors to later life health. Mediation analysis plays an important role in these investigations since it offers the potential to use empirical data and statistical tools to separate the influence of an exposure on an outcome into effects through and around potential mediators. In this chapter, we have attempted to give a thorough but accessible introduction to causal mediation analysis and how it relates to Structural Equation Modelling (SEM). In particular we have reviewed the assumptions implicit in the traditional approach for the desired interpretation of mediation effects to be justified, and how many of these are relaxed when adopting the more flexible counterfactual-based approach. We have highlighted particular aspects, such as intermediate confounding and survival outcomes, which are particularly pertinent in life course investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that T represents matrix transposition, so that \(\mathbf {C}\) is \((p\times 1)\) even though \((C_1,C_2,\ldots ,C_p)\) is a (\(1\times p\)) row vector. This will be useful for writing regression equations later. Also note that, for now, an informal notion of “confounding” is adopted, but see Sect. 1.2.2.3 for the formal definition.

  2. 2.

    One important subtlety that we do not consider further in this chapter is that an alternative partitioning of the total effect in terms of alternative definitions of natural effects is given by \(\text {TCE}= E\left\{ Y\left( 1,M(1)\right) \right\} - E\left\{ Y\left( 0,M(1)\right) \right\} \; + \; E\left\{ Y\left( 0,M(1)\right) \right\} - E\left\{ Y\left( 0,M(0)\right) \right\} \). In other words, the definitions of NDE and NIE given above are not unique. Indeed, reversing the coding of X leads in general to direct and indirect effects of different magnitudes (not just different signs), which is somewhat unpleasing. This was acknowledged when the first definitions were given Robins and Greenland (1992), and much has been written about it since; see, for example, (Daniel, De Stavola, Cousens, & Vansteelandt, 2015; VanderWeele, 2013).

  3. 3.

    Note that the definitions given here are not exactly the same as those originally given by VanderWeele et al. (2014), but rather are the closely-related definitions given by Vansteelandt and Daniel (2016).

  4. 4.

    This is since we are using approaches that deal with confounding by adjustment/weighting etc, rather than approaches that rely on having measured instrumental variables Burgess (2015).

  5. 5.

    Note that the mathematical representation of this assumption makes it clear that in fact unmeasured common causes of X and M (i.e. \(V_3\) in Fig. 1.5), which would constitute a form of unmeasured confounding of X and Y, is not prohibited by this assumption.

  6. 6.

    Note that although it may appear more complicated, we are only using the identity \(E(A)=\sum _bE(A|B=b)\text {Pr}(B=b)\), except now that we condition on X and \(\mathbf {C}\) throughout. In other words, we are using \(E(A|C)=\sum _bE(A|B=b,C)\text {Pr}(B=b|C)\) with \(C=\{X,\mathbf {C}\}\), \(A=Y(x,m)\) and \(B=\mathbf {L}\).

  7. 7.

    Although note that identical results would be obtained using the product method were we to use a linear probability model for the binary mediator.

References

  • Aalen, O. O. (2012). Armitage lecture 2010: Understanding treatment effects: The value of integrating longitudinal data and survival analysis. Statistics in Medicine, 31(18), 1903–1917.

    Article  Google Scholar 

  • Avin, C., Shpitser, I., Pearl, J. (2005). Identifiability of Pathspecific Effects in Proceedings of the 19th Joint Conference on Artificial Intelligence.

    Google Scholar 

  • Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.

    Article  Google Scholar 

  • Bartoli, F., Crocamo, C., Gennaro, G. M., Castagna, G., Trotta, G., Clerici, M., et al. (2016). Exploring the association between bipolar disorder and uric acid: A mediation analysis. Journal of Psychosomatic Research, 84, 56–59.

    Article  Google Scholar 

  • Benedum, C. M., Yazdy, M. M., Parker, S. E., Mitchell, A. A., & Werler, M. M. (2016). Association of clomiphene and assisted reproductive technologies with the risk of neural tube defects. American Journal of Epidemiology, 183, 977987.

    Article  Google Scholar 

  • Biarnes, M., Arias, L., Alonso, J., & Garcia, M. (2015). Increased fundus autouorescence and progression of geographic atrophy secondary to age-related macular degeneration: The gain study. American Journal of Ophthalmology, 160, 34–353.

    Article  Google Scholar 

  • Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

    Book  Google Scholar 

  • Bollen, K. A., & Pearl, J. (2013). Eight myths about causality and structural equation models. In S.L. Morgan (Ed.), Handbook of causal analysis for social research (pp. 301–328). Springer.

    Google Scholar 

  • Burgess, S., Daniel, R. M., Butterworth, A. S., Thompson, S. G. (2015). The EPIC-InterAct Consortium. Network mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. International Journal of Epidemiology, 44, 484–495 (2015).

    Article  Google Scholar 

  • Chen, Y.-H., Mukherjee, B., Ferguson, K. K., Meeker, J. D., & VanderWeele, T. J. (2016). Mediation formula for a binary outcome and a time-varying exposure and mediator, accounting for possible exposure-mediator interaction. American Journal of Epidemiology, 184, 157159.

    Article  Google Scholar 

  • Chen, B., & Pearl, J. (2013). Regression and causation: A critical examination of econometrics textbooks. Real-World Economics Review, 65, 2–20.

    Google Scholar 

  • Cole, S. R., & Frangakis, C. E. (2009). The consistency statement in causal inference: A definition or an assumption? Epidemiology, 20(1), 3–5.

    Article  Google Scholar 

  • Cole, S. R., & Hernán, M. A. (2002). Fallibility in estimating direct effects. International Journal of Epidemiology, 31, 163–165.

    Article  Google Scholar 

  • Cox, D. R. (1958). Planning of experiments. New York: Wiley.

    Google Scholar 

  • Daniel, R. M., De Stavola, B. L., & Vansteelandt, S. (in press). The formal approach to quantitative causal inference in epidemiology: misguided or misrepresented? International Journal of Epidemiology.

    Google Scholar 

  • Daniel, R. M., De Stavola, B. L., & Cousens, S. N. (2011). gformula: Estimating causal effects in the presence of time-varying confounding or mediation using the g-computation formula. The Stata Journal, 11(4), 479–517.

    Article  Google Scholar 

  • Daniel, R. M., De Stavola, B. L., Cousens, S., & Vansteelandt, S. (2015). Causal mediation analysis with multiple causally-ordered mediators. Biometrics, 71, 1–14.

    Article  Google Scholar 

  • De Stavola, B. L., Daniel, R. M., Ploubidis, G. B., & Micali, N. (2015). Mediation analysis with in- termediate confounding: structural equation modeling viewed through the causal inference lens. American Journal of Epidemiology, 181, 64–80.

    Article  Google Scholar 

  • Didelez, V., Dawid P., & Geneletti, S. (2006). Direct and indirect effects of sequential treatments. In Proceedings of the 22nd Annual Conference on Uncertainty in Artifical Intelligence, 138–146.

    Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.

    Book  Google Scholar 

  • Emsley, R., liu, H., Dunn, G., Valeri, L., & VanderWeele, T. (2014). Paramed: A command to perform causal mediation analysis using parametric models. Stata Journal.

    Google Scholar 

  • Emsley, R., Dunn, G., & White, I. R. (2010). Mediation and moderation of treatment effects in randomised controlled trials of complex interventions. Statistical Methods in Medical Research, 19(3), 237–270.

    Article  Google Scholar 

  • Fosen J., Ferkingstad, E., Borgan, Ø., & Aalen, O. O. (2006). Dynamic path analysisa new approach to analyzing time dependent covariates. Lifetime Data Analysis, 12, 143–167.

    Google Scholar 

  • Gelfand, L. A., MacKinnon, D. P., De Rubeis, R. J., & Baraldi, A. N. (2016). Mediation analysis with survival outcomes: Accelerated failure time versus proportional hazards models. Frontiers in Psychology, 7, 423.

    Google Scholar 

  • Geneletti, S. (2007). Identifying direct and indirect effects in a non-counterfactual framework. Journal of the Royal Statistical Society B, 69, 199–215.

    Article  Google Scholar 

  • Greenland, S. (2003). Quantifying biases in causal models:classical confounding versus collider-stratification bias. Epidemiology, 14, 300–3067.

    Google Scholar 

  • Greenland, S., & Robins, J. M. (1986). Identifiability, exchangeability, and epidemiological con-founding. International Journal of Epidemiology, 15, 413–419.

    Article  Google Scholar 

  • Harris, H. R., Costenbader, K. H., Mu, F., Kvaskoff, M., Malspeis, S., Karlson, E. W., et al. (2016). Endometriosis and the risks of systemic lupus erythematosus and rheumatoid arthritis in the nurses health study ii. Annals of the Rheumatic Diseases, 75, 1279–1284.

    Article  Google Scholar 

  • Hayes, A. F., & Preacher, K. J. (2010). Quantifying and testing indirect effects in simple mediation models when the constituent paths are non linear. Multivariate Behavioral Research, 45, 527–660.

    Article  Google Scholar 

  • Hernán, M. A., & Taubman, S. L. (2008). Does obesity shorten life? The importance of well-defined interventions to answer causal questions. International Journal of Obesity, 32(Suppl 3), S8–S14.

    Article  Google Scholar 

  • Hudgens, M. G., & Halloran, M. E. (2008). Towards causal inference with interference. Journal of the American Statistical Association, 103(482), 832–842.

    Article  Google Scholar 

  • Jackson, J. W., VanderWeele, T. J., Blacker, D., & Schneeweiss, S. (2015). Mediators of first- versus second-generation antipsychotic-related mortality in older adults. Epidemiology, 26, 700709.

    Google Scholar 

  • Jiang, Z., & VanderWeele, T. (2015). When is the difference method conservative for assessing mediation? American Journal of Epidemiology, 182(105–108), 28.

    Google Scholar 

  • Krebs, N. M., Chen, A., Zhu, J., Sun, D., Liao, J., Stennett, A. L., et al. (2016). Comparison of puff volume with cigarettes per day in predicting nicotine uptake among daily smokers. American Journal of Epidemiology, 184(48–57), 27.

    Google Scholar 

  • Kupers, L. K., Xu, X., Jankipersadsing, S. A., Vaez, A., la-Bastide-van Gemert, S., Scholtens, S. et al. (2015). Dna methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. International Journal of Epidemiology, 4, 1224–1237 (2015).

    Article  Google Scholar 

  • Kushner, S. C., Quilty, L. C., Uliaszek, A. A., McBride, C., & Bagby, R. M. (2016). Therapeutic alliance mediates the association between personality and treatment outcome in patients with major depressive disorder. Journal of Affective Disorders, 201, 137–144.

    Article  Google Scholar 

  • Lange, T., & Hansen, J. V. (2011). Direct and indirect effects in a survival context. Epidemiology, 22, 575–581.

    Article  Google Scholar 

  • Lange, T., Vansteelandt, S., & Bekaert, M. (2012). A simple unified approach for estimating natural direct and indirect effects. American Journal Epidemiology, 176, 190–195.

    Article  Google Scholar 

  • Luo, P., & Geng, Z. (2016). Causal mediation analysis for survival outcome with unobserved mediator-outcome confounders. Computational Statistics and Data Analysis, 93, 336–347.

    Article  Google Scholar 

  • MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. New York, US: Taylor & Francis.

    Google Scholar 

  • MacKinnon, D., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83–117.

    Article  Google Scholar 

  • Martinussen, T., & Vansteelandt, S. (2013). Cox and aalen regression models. Lifetime Data Analysis, 19, 279–96.

    Article  Google Scholar 

  • Martinussen, T., Vansteelandt, S., Gerster, M., & Hjelmborg, J. B. (2011). Estimation of direct effects for survival data by using the Aalen additive hazards model. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 73(5), 773–788.

    Article  Google Scholar 

  • Mendola, P., Mumford, S. L., Mnnisto, T. I., Holston, A., Reddy, U. M., & Laughon, S. K. (2015). Controlled direct effects of preeclampsia on neonatal health after accounting for mediation by preterm bir th epidemiology. Epidemiology, 26, 17–26.

    Article  Google Scholar 

  • Muthén, B. (2011). Applications of causally defined direct and indirect effects in mediation analysis using SEM in Mplus.

    Google Scholar 

  • Naimi, A. I., Kaufman, J. S., & MacLehose, R. F. (2014). Mediation misgivings: am-biguous clinical and public health interpretations of natural direct and indirect effects. International Journal of Epidemiology.

    Google Scholar 

  • Naimi, A. I., Schnitzer, M. I., Moodie, L. M., & Bodnar, E. E. M. (2016). Mediation analysis for health disparities research. American Journal of Epidemiology, 184, 315–324.

    Google Scholar 

  • Nemes, S., Parris, T. Z., Danielsson, A., Einbeigi, Z., Steineck, G., Jonasson, J. M., et al. (2013). Integrative genomics with mediation analysis in a survival context. Computational and Mathematical Methods in Medicine.

    Article  Google Scholar 

  • Nguyen, Q. C., Osypuk, T. L., Schmidt, N. M., Glymour, M. M., & Tchetgen Tchetgen, E. J. (2015). Practical guidance for conducting mediation analysis with multiple mediators using inverse odds ratio weighting. American Journal of Epidemiology.

    Google Scholar 

  • Nguyen, T. T. X., Tchetgen-Tchetgen, E., Kawachi, I., Gilman, S. E., Walter, S., & Gly- mour, M. (2016). Comparing alternative effect decomposition methods: The role of literacy in mediating educational effects on mortality. Epidemiology, 27, 670–676.

    Google Scholar 

  • Pearce. A., Sawyer, A. C. P., Chittleborough, C. R., Mittinty, M. N., Law, C., & Lynch, J.W. (2016). Do early life cognitive ability and self-regulation skills explain socioeconomic inequalities in academic achievement? an effect decomposition analysis in uk and australian cohorts. Social Science and Medicine, 165, 108–118.

    Google Scholar 

  • Pearl, J. (2001). Direct and indirect effects. In Proceedings of the Seventeenth Conference on Un-certainty in Artificial Intelligence (pp. 411–420). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Pearl, J. (2010). On the consistency rule in causal inference: Axiom, definition, assumption, or theorem? Epidemiology, 21(6), 872–875.

    Article  Google Scholar 

  • Petersen, M. L., Sinisi, S. E., & van der Laan, M. J. (2006). Estimation of direct causal effects. Epidemiology, 17(3), 276–284.

    Article  Google Scholar 

  • Rauscher, G. H., Campbell, R. T., Wiley, E. L., Hoskins, K., Stolley, M. R., & Warnecke, R. B. (2016). Mediation of racial and ethnic disparities in estrogen/progesterone receptornegative breast cancer by socioeconomic position and reproductive factors. American Journal of Epidemiology, 183, 884–893.

    Article  Google Scholar 

  • Richardson, T. S., & Robins, J. (2013). Single world intervention graphs (swigs): A unification of the counterfactual and graphical approaches to causality. Technical Report 128, Center for Statistics and the Social Sciences, University of Washington. 30.

    Google Scholar 

  • Robins, J. (1986). A new approach to causal inference in mortality studies with a sustained expo-sure period | application to control of the healthy worker survivor effect. Mathematical Modelling, 7(9–12), 1393–1512.

    Article  Google Scholar 

  • Robins, J. M. (2003). Semantics of causal DAG models and the identification of direct and indirect effects. In P. Green, N. Hjort, & S. Richardson (Eds.), Highly structured stochastic systems (pp. 70–81). London: Oxford University Press.

    Google Scholar 

  • Robins, J. M., & Greenland, S. (1992). Identifiability and exchangeability for direct and indirect effects. Epidemiology, 3(2), 143–155.

    Article  Google Scholar 

  • Robins, J. M., & Richardson, T. S. (2010). Alternative graphical causal models and the identification of direct effects. In P. Shrout (Ed.), Causality and psychopathology: Finding the determinants of disorders and their cures (pp. 103–158). Oxford: Oxford University Press.

    Google Scholar 

  • Rodgers, S., Vandeleur, C. L., Ajdacic-Gross, V., Aleksandrowicz, A. A., Strippoli M. P. F., Castelao, E. et al. (2016). Tracing the associations between sex, the atypical and the combined atypical-melancholic depression subtypes: A path analysis. Journal of Affective Disorders, 190, 807–818.

    Article  Google Scholar 

  • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5), 688–701.

    Article  Google Scholar 

  • Rubin, D. B. (1980). Comment on: randomization analysis of experimental data: The fisher randomization test. Journal of the American Statistical Association, 75(371), 591–593.

    Google Scholar 

  • Tchetgen Tchetgen, E. J. (2011). On causal mediation analysis with a survival outcome. The International Journal of Biostatistics, 7, 1–38.

    Article  Google Scholar 

  • Tchetgen Tchetgen, E. (2013). Inverse odds ratio-weighted estimation for causal mediation analysis. Statistics in Medicine,32, 4567–4580.

    Article  Google Scholar 

  • Tchetgen Tchetgen, E. J., & VanderWeele, T. J. (2013). On causal inference in the presence of interference. Statistical Methods in Medical Research, 21(1):55–75, 2012.

    Google Scholar 

  • Tchetgen Tchetgen, E. J., & VanderWeele, T. J. (2014). On identification of natural direct effects when a confounder of the mediator is directly affected by exposure. Epidemiology, 25(2), 282–291.

    Google Scholar 

  • Tein, J.-Y., & MacKinnon, D. P. (2003). Estimating mediated effects with survival data. In H. Yanai, A. Okada, K. Shigemasu, Y. Kano, & J. J. Meulman, (Eds.) New Developments in Psychometrics: Proceedings of the International Meeting of the Psychometric Society IMPS 2001 (pp. 405–412). Tokyo: Springer. 31.

    Google Scholar 

  • Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2011) Mediation: R package for causal mediation analysis. Missing.

    Google Scholar 

  • Valeri, L., & VanderWeele, T. J. (2013). Mediation analysis allowing for exposure-mediator in- teractions and causal interpretation: Theoretical assumptions and implementation with sas and spss macros. Psychological Methods, 18, 137–150.

    Article  Google Scholar 

  • Valeri, L., & VanderWeele, T. J. (2015). Sas macro for causal mediation analysis with survival data. Epidemiology, 26, e23–e24.

    Article  Google Scholar 

  • van der Laan, M. J., & Rose, S. (2011). Targeted learning: Causal inference for observational and experimental data. Springer.

    Google Scholar 

  • van Iersel, K. C., Kiesner, J., Pastore, M., & Scholte, R. H. J. (2016). The impact of menstrual cycle-related physical symptoms on daily activities and psychological wellness among adolescent girls. Journal of Adolescence, 49, 81–90.

    Article  Google Scholar 

  • VanderWeele, T. J. (2015). Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford University Press.

    Google Scholar 

  • VanderWeele, T. J. (2009a). Marginal structural models for the estimation of direct and indirect effects. Epidemiology, 10(1), 18–26.

    Article  Google Scholar 

  • VanderWeele, T. J. (2009b). Mediation and mechanism. European Journal of Epidemiology, 24(5), 217–224.

    Article  Google Scholar 

  • VanderWeele, T. J. (2009c). Concerning the consistency assumption in causal inference. Epidemiology, 20(6), 880–883.

    Article  Google Scholar 

  • VanderWeele, T. J. (2011). Causal mediation analysis with survival data. Epidemiology, 22, 582–585.

    Article  Google Scholar 

  • VanderWeele, T. J. (2012). Structural equation modeling and epidemiologic analysis. American Journal of Epidemiology, 176(7), 608–612.

    Article  Google Scholar 

  • VanderWeele, T. J. (2013). A three-way decomposition of a total effect into direct, indirect, and interactive effects. Epidemiology, 24(224–32), 29.

    Google Scholar 

  • VanderWeele, T. J., & Shpitser, I. (2010). Bias formulas for sensitivity analysis for direct and indirect effects. Epidemiology, 21(4), 540–551.

    Article  Google Scholar 

  • VanderWeele, T., & Vansteelandt, S. (2009). Conceptual issues concerning mediation, interventions and composition. Statistics and Its Interface, 2, 457–468.

    Article  Google Scholar 

  • VanderWeele, T. J., & Vansteelandt, S. (2010). Odds ratios for mediation analysis for a dichoto-mous outcome. American Journal of Epidemiology, 172(12), 1339–1348.

    Article  Google Scholar 

  • VanderWeele, T. J., Vansteelandt, S., & Robins, J. M. (2014). Effect decomposition in the presence if an exposure-induced mediator-outcome confounder. Epidemiology, 25(2), 300–306.

    Article  Google Scholar 

  • Vansteelandt, S. (2012). Estimation of direct and indirect effects. In C. Berzuini, A. P. Dawid, & L. Bernardinelli (Eds.), Causality: Statistical perspectives and applications (pp. 126–150). Chichester: Wiley.

    Chapter  Google Scholar 

  • Vansteelandt, S., Bekaert, M., & Lange, T. (2012). Imputation strategies for the estimation of natural direct and indirect effects. Epidemiologic Methods, 1, 131–158.

    Article  Google Scholar 

  • Vansteelandt, S., & Daniel, R. M. (2016). Interventional effects with multiple mediators. Epidemiology (in press), 1, 1–8.

    Google Scholar 

  • Vansteelandt, S., & Joffe, M. (2014). Structural nested models and g-estimation: the partially realized promise. Statistical Science, 29(4), 707–731.

    Article  Google Scholar 

  • Vansteelandt, S., & VanderWeele, T. J. (2012). Natural direct and indirect effects on the exposed: Effect decomposition under weaker assumptions. Biometrics, 68(4), 1019–1027.

    Article  Google Scholar 

  • Winship, C., & Mare, R. D. (1982). Structural equations and path analysis for discrete data. American Journal of Sociology, 88, 54–110.

    Google Scholar 

  • Wright, S. (1934). The method of path coeffcients. Annals of Mathematical Statistics, 5, 161–215.

    Article  Google Scholar 

  • Zhang, Y. T., Laraia, B. A., Mujahid, M. S., Tamayo, A., Blanchard, S. D., Warton, E. M., et al. (2015). Does food vendor density mediate the association between neighborhood deprivation and bmi?: A g-computation mediation analysis. Epidemiology, 26, 344352.

    Article  Google Scholar 

  • Zheng, W., & van der Laan, M. J. (2012). Targeted maximum likelihood estimation of natural direct effects. The International Journal of Biostatistics, 8, Article 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rhian M. Daniel or Bianca L. De Stavola .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daniel, R.M., De Stavola, B.L. (2019). Mediation Analysis for Life Course Studies. In: Pathways to Health. SpringerBriefs in Population Studies. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1707-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1707-4_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1705-0

  • Online ISBN: 978-94-024-1707-4

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics