Skip to main content

Chapter 2 Non-reciprocity in Parametrically Modulated Systems

  • Conference paper
  • First Online:
Quantum Nano-Photonics (NATO 2017)

Abstract

A system is called reciprocal if signal propagation is identical under exchange of detector and source. Of particular technological importance are non-reciprocal devices for electromagnetic radiation. Currently available non-reciprocal technology largely relies on non-reciprocal materials. Recently, breaking reciprocity by parametric modulation has received significant attention. Here, we provide an accessible illustration of non-reciprocity in parametrically coupled two-mode systems. We use a simple mechanical oscillator picture to familiarize the reader with coherent control operations before discussing a Ramsey interferometer as the prototypical non-reciprocal device in the context of parametric mode coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weng CC (1999) Waves and fields in inhomogeneous media. In: Dudley DG (ed) Wiley-IEEE Press Series on Electromagnetic Waves

    Google Scholar 

  2. Zangwill A (2013) Modern electrodynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Saleh B, Teich M (2007) Fundamentals of photonics. Wiley series in pure and applied optics. Wiley, Hoboken

    Google Scholar 

  4. Kamal AK (1960) A parametric device as a nonreciprocal element. Proc IRE 48(8):1424

    Article  Google Scholar 

  5. Kamal A, Clarke J, Devoret M (2011) Noiseless non-reciprocity in a parametric device. Nat Phys 7(4):311

    Article  Google Scholar 

  6. Fang K, Yu Z, Fan S (2012) Photonic Aharonov-Bohm effect based on dynamic modulation. Phys Rev Lett 108:153901

    Article  ADS  Google Scholar 

  7. Fang K, Yu Z, Fan S (2013) Experimental demonstration of a photonic Aharonov-Bohm effect ar radio frequencies. Phys Rev B 87:060301

    Article  ADS  Google Scholar 

  8. Estep NA, Sounas DL, Soric J, Alù A (2014) Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat Phys 10(12):923

    Article  Google Scholar 

  9. Lira H, Yu Z, Fan S, Lipson M (2012) Electrically driven nonreciprocity induced by interband photonic transitions on a silicon chip. Phys Rev Lett 109:033901

    Article  ADS  Google Scholar 

  10. Tzuang LD, Fang K, Nussenzveig P, Fan S, Lipson M (2014) Non-reciprocal phase-shift induced by an effective magnetic flux for light. Nat Photon 8:701

    Article  ADS  Google Scholar 

  11. Ruesink F, Miri MA, Alu A, Verhagen E (2016) Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat Commun 7:13662

    Article  ADS  Google Scholar 

  12. Fang K, Luo J, Metelmann A, Matheny MH, Marquardt F, Clerk AA, Painter O (2017) Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat Phys 13(5):465

    Article  Google Scholar 

  13. Peterson GA, Lecocq F, Cicak K, Simmonds RW, Aumentado J, Teufel JD (2017) Demonstration of efficient nonreciprocity in a microwave optomechanical circuit. Phys Rev X 7:031001

    Google Scholar 

  14. Bernier NR, Toth LD, Koottandavida A, Ioannou MA, Malz D, Nunnenkamp A, Feofanov A, Kippenberg T (2017) Nonreciprocal reconfigurable microwave optomechanical circuit. Nat Commun 8(1):604

    Article  ADS  Google Scholar 

  15. Ranzani L, Aumentado J (2014) New J Phys 16(10):103027

    Article  Google Scholar 

  16. Frimmer M, Novotny L (2014) The classical Bloch equations. Am J Phys 82:947

    Article  ADS  Google Scholar 

  17. Allen L, Eberly JH (1987) Optical resonance and two-level atoms. Dover Books on Physics, New York

    Google Scholar 

  18. Fox M (2006) Quantum optics: an introduction, vol 15. OUP, Oxford

    MATH  Google Scholar 

  19. Ramsey NF (1950) A molecular beam resonance method with separated oscillating fields. Phys Rev 78:695

    Article  ADS  Google Scholar 

  20. Faust T, Rieger J, Seitner MJ, Kotthaus JP, Weig EM (2013) Coherent control of a classical nanomechanical two-level system. Nat Phys 9(8):485

    Article  Google Scholar 

  21. Okamoto H, Gourgout A, Chang CY, Onomitsu K, Mahboob I, Chang EY, Yamaguchi H (2013) Coherent phonon manipulation in coupled mechanical resonators. Nat Phys 9(8):480

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Novotny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frimmer, M., Novotny, L. (2018). Chapter 2 Non-reciprocity in Parametrically Modulated Systems. In: Di Bartolo, B., Silvestri, L., Cesaria, M., Collins, J. (eds) Quantum Nano-Photonics. NATO 2017. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1544-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1544-5_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1543-8

  • Online ISBN: 978-94-024-1544-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics