Skip to main content

Water Turns the “Non-biological” Fluctuation of Protein into “Biological” One

  • Chapter
High Pressure Bioscience

Part of the book series: Subcellular Biochemistry ((SCBI,volume 72))

  • 2040 Accesses

Abstract

Structural fluctuation of protein is not just an mechanical “oscillation,” but an event induced by an interplay of mechanical and thermodynamic processes in which water plays crucial role. The chapter is devoted to provide a theoretical description concerning the concept of structural fluctuation of protein, based on methods of the statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasaka K (2003) Highly fluctuating protein structures revealed by variable-pressure nuclear magnetic resonance. Biochemistry 42:10877–10885

    Article  Google Scholar 

  • Akasaka K (2006) Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev 106:1814–1835

    Article  CAS  PubMed  Google Scholar 

  • Akasaka K, Li H, Yamada H, Li R, Thoresen T, Woodward CK (1999) Pressure response of protein backbone structure. Pressure-induced amide 15N chemical shifts in BPTI. Protein Sci 8:1946–1953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bihan DL, Fukuyama H (eds) (2010) Water: The forgotten biological molecule. Pan Stanford Publishing, Singapore

    Google Scholar 

  • Brooks B, Karplus M (1983) Harmonic dynamics of protein: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A 80:6571–6575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burghardt TP, Josephson MP, Ajtai K (2011) Single myosin cross-bridge orientation in cardiac papillary muscle detects lever-arm shear strain in transduction. Biochemistry 50:7809–7821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1–89

    Article  Google Scholar 

  • Chong SH, Hirata F (1997) Nonlinear electrical potential fluctuations of solvent around solutes: an integral equation study. J Chem Phys 106:5225–5238

    Article  CAS  Google Scholar 

  • Chong SH, Miura S, Bsasu G, Hirata F (1995) Molecular theory for the non-equilibrium free energy profile in electron transfer reaction. J Phys Chem 99:10526–10529

    Article  CAS  Google Scholar 

  • Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69:1352–1360

    Article  CAS  Google Scholar 

  • Fourme R, Girard E, Akasaka K (2012) High-pressure macromolecular crystallography and NMR: status, achievements and prospects. Current Opinion in Struct Biol 22:1–7

    Article  Google Scholar 

  • Go N, Noguchi T, Nishikawa T (1983) Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci U S A 80:3696–3700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayward S, Kitao A, Hirata F, Go N (1993) Effect of solvent on collective motions in BPTI. J Mol Biol 234:1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Hirata F (1992) Interaction-site representation of the Smoluchowski-Vlasov equation – the space-time correlation-functions in a molecular-liquid. J Chem Phys 96:4619–4624

    Article  CAS  Google Scholar 

  • Hirata F (ed) (2003) Molecular theory of solvation. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hirata F, Akasaka K (2015) Structural fluctuation of protein induced by thermodynamic perturbation. J Chem Phys 142:044110–044118

    Google Scholar 

  • Horiuchi T, Go N (1991) Investigating protein dynamics in collective coordinate space. Proteins 10:106–116

    Article  CAS  PubMed  Google Scholar 

  • Ikeguchi M, Ueno J, Sato M, Kidera A (2005) Protein structural change upon ligand binding: linear response theory. Phys Rev Lett 94:078102–078104

    Article  PubMed  Google Scholar 

  • Imai T, Kinoshita M, Hirata F (2000) Theoretical study for partial molar volume of amino acids in aqueous solution: implication of ideal fluctuation volume. J Chem Phys 112:9469–9478

    Article  CAS  Google Scholar 

  • Imai T, Kovalenko A, Hirata F (2004) Solvation thermodynamics of protein studied by the 3D-RISM theory. Chem Phys Lett 395:1–6

    Article  CAS  Google Scholar 

  • Imai T, Ohyama S, Kovalenko A, Hirata F (2007) Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin. Protein Sci 16:1927–1933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim B, Hirata F (2013) Structural fluctuation of protein in water around its native state: a new statistical mechanics formulation. J Chem Phys 138:054108–054119

    Article  PubMed  Google Scholar 

  • Kirkwood JG, Buff FP (1951) The statistical mechanical theory of solutions. J Chem Phys 19:774–777

    Article  CAS  Google Scholar 

  • Kitahara R, Yokoyama S, Akasaka K (2005) NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar. J Mol Biol 347:277–285

    Article  CAS  PubMed  Google Scholar 

  • Kitao A, Hirata F, Go N (1991) The effect of solvent on the conformation and the collective motions of protein: normal mode analysis and molecular dynamics simulations of melittin in water and in vacuum. Chem Phys 158:447–472

    Article  CAS  Google Scholar 

  • Kubo R, Toda M, Hashitsume N (1991) Statistical physics II, nonequilibrium statistical mechanics. Springer, Berlin

    Google Scholar 

  • Kuwajima K, Goto Y, Hirata F, Terazima M, Kataoka M (eds) (2009) Water and biomolecules. Springer, Berlin/Heidelberg

    Google Scholar 

  • Lamm G, Szabo A (1986) Langevin modes of macromolecules. J Chem Phys 85:7334–7348

    Article  CAS  Google Scholar 

  • Landau LD, Lifshitz EM (1964) Statistical physics (Japanese translation). Iwanami, Tokyo

    Google Scholar 

  • Makowski L, Rodi DJ, Mandava S, Minh D, Gore DB, Fischetti RF (2008) Molecular crowding inhibits intramolecular breathing motions in proteins. J Mol Biol 375:529–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marcus R (1956) On the theory of oxidation–reduction reactions involving electron transfer. I. J Chem Phys 24:966–979

    Article  CAS  Google Scholar 

  • Mchaourab HS, Oh KJ, Fang CJ, Hubbell WL (1997) T4 lysozyme and mutants thereof crystallize in different conformations that are related to each other by a bend about a hinge in the molecule. Biochemistry 36:307–316

    Article  CAS  PubMed  Google Scholar 

  • McQuarrie DA (1976) Statistical mechanics. Harper and Row Publishers, New York

    Google Scholar 

  • Mori H (1962) Collective motion of particles at finite temperatures. Prog Theor Phys 28:763–783

    Article  Google Scholar 

  • Wang MC, Uhlenbeck GE (1945) On the theory of the Brownian motion II. Rev Mod Phys 17:323–342

    Article  Google Scholar 

  • Yoshida N, Imai T, Phongphanphanee S, Kovalenko A, Hirata F (2009) Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids. J Phys Chem B 113:873–886

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Hirata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hirata, F. (2015). Water Turns the “Non-biological” Fluctuation of Protein into “Biological” One. In: Akasaka, K., Matsuki, H. (eds) High Pressure Bioscience. Subcellular Biochemistry, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9918-8_7

Download citation

Publish with us

Policies and ethics