Skip to main content

Armed Forces Radiobiology Research Institute: R&D, Training, Crisis Response. Accomplishments, Opportunities and Policy Questions

  • Conference paper
Nuclear Terrorism and National Preparedness

Abstract

The Armed Forces Radiobiology Research Institute (AFRRI) mission is to preserve and protect the health and performance of U.S. military personnel through research and training that advance understanding of the effects of ionizing radiation. This mission encompasses (1) basic and applied research to identify and develop measures to prevent, assess and treat radiation injury; (2) education and training to maintain a pool of qualified radiation biologists, health care providers, disaster preparedness personnel and operational planners; and (3) maintenance of an advisory team ready to be activated in the event of radiological crises and consequence management missions. Products resulting from the AFRRI program will prevent, mitigate and treat radiation injury and provide guidance for medical management. These products will expand the ability of warfighters to accomplish missions and will improve morale. AFRRI is funded to identify and develop products to the point where they are poised for advanced development. A number of countermeasure candidates have been developed with efficacies that would save tens of thousands of people in a mass casualty scenario. Examples of current research findings are: (1) Effect of radiation quality on countermeasure efficacy; (2) Accelerated hematopoietic syndrome in a minipig model; (3) Roles of REDD1 and miRNA30c in radiation injury and (4) multiparameter biodosimetry in a nonhuman primate model. Policy questions include the timing of administration relative to irradiation, the possibility of far-forward fielding, the administration route, and whether the priority is mass casualty or small-scale scenarios (which affects the availability of medical care).

The views expressed do not necessarily represent the Armed Forces Radiobiology Research Institute, the Uniformed Services University of the Health Sciences, or the Department of Defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DiCarlo AL, Maher C, Hick JL, Hanfling D, Dainiak N, Chao N, Bader JL, Coleman CN, Weinstock DM (2011) Radiation injury after a nuclear detonation: medical consequences and the need for scarce resources allocation. Disaster Med Public Health Prep 5(Suppl 1):S32–44. doi:5/Supplement_1/S32 [pii] 10.1001/dmp.2011.17

  2. Blakely WF, Carr Z, Chu MC, Dayal-Drager R, Fujimoto K, Hopmeir M, Kulka U, Lillis-Hearne P, Livingston GK, Lloyd DC, Maznyk N, Perez Mdel R, Romm H, Takashima Y, Voisin P, Wilkins RC, Yoshida MA (2009) WHO 1st consultation on the development of a global biodosimetry laboratories network for radiation emergencies (BioDoseNet). Radiat Res 171(1):127–139. doi:10.1667/RR1549.1

    Article  Google Scholar 

  3. Miura T, Nakata A, Kasai K, Nakano M, Abe Y, Tsushima E, Ossetrova NI, Yoshida MA, Blakely WF (2014) A novel parameter, cell-cycle progression index, for radiation dose absorbed estimation in the premature chromosome condensation assay. Radiat Prot Dosim 159:52–60. doi:10.1093/rpd/ncu126

    Article  Google Scholar 

  4. Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM (2011) Q(gamma-H2AX), an analysis method for partial-body radiation exposure using gamma-H2AX in nonhuman primate lymphocytes. Radiat Meas 46(9):877–881. doi:10.1016/j.radmeas.2011.02.017

    Article  Google Scholar 

  5. Blakely WF, Sandgren DJ, Nagy V, Kim SY, Sigal GB, Ossetrova NI (2014) Further biodosimetry investigations using murine partial-body irradiation model. Radiat Prot Dosim 159(1–4):46–51. doi:10.1093/rpd/ncu127

    Article  Google Scholar 

  6. Ossetrova NI, Condliffe DP, Ney PH, Krasnopolsky K, Hieber KP, Rahman A, Sandgren DJ (2014) Early-response biomarkers for assessment of radiation exposure in a mouse total-body irradiation model. Health Phys 106(6):772–786. doi:10.1097/hp.0000000000000094

    Article  Google Scholar 

  7. Blakely WF, Ossetrova NI, Whitnall MH, Sandgren DJ, Krivokrysenko VI, Shakhov A, Feinstein E (2010) Multiple parameter radiation injury assessment using a nonhuman primate radiation model-biodosimetry applications. Health Phys 98(2):153–159. doi:10.1097/HP.0b013e3181b0306d

    Article  Google Scholar 

  8. Elliott TB, Deutz NE, Gulani J, Koch A, Olsen CH, Christensen C, Chappell MC, Whitnall MH, Moroni M (2014) Gastrointestinal acute radiation syndrome in Gottingen minipig (Sus scrofa domestica): an exploratory study. Comp Med 64(6):456–463

    Google Scholar 

  9. Moroni M, Ngudiankama BF, Christensen C, Olsen CH, Owens R, Lombardini ED, Holt RK, Whitnall MH (2013) The Gottingen minipig is a model of the hematopoietic acute radiation syndrome: G-colony stimulating factor stimulates hematopoiesis and enhances survival from lethal total-body gamma-irradiation. Int J Radiat Oncol Biol Phys 86(5):986–992. doi:10.1016/j.ijrobp.2013.04.041

    Article  Google Scholar 

  10. Moroni M, Elliott TB, Deutz NE, Olsen CH, Owens R, Christensen C, Lombardini ED, Whitnall MH (2014) Accelerated hematopoietic syndrome after radiation doses bridging hematopoietic (H-ARS) and gastrointestinal GI-ARS acute radiation syndrome: early hematological changes and systemic inflammatory response syndrome in minipig. Int J Radiat Biol 90:363–372

    Article  Google Scholar 

  11. Brook I, Elliott TB, Ledney GD, Shoemaker MO, Knudson GB (2004) Management of postirradiation infection: lessons learned from animal models. Mil Med 169(3):194–197

    Article  Google Scholar 

  12. Kiang JG, Ledney GD (2013) Skin injuries reduce survival and modulate corticosterone, C-reactive protein, complement component 3, IgM, and prostaglandin E 2 after whole-body reactor-produced mixed field (n + gamma-Photons) irradiation. Oxid Med Cell Longev 2013:821541. doi:10.1155/2013/821541

    Article  Google Scholar 

  13. DeBell RM, Ledney GD, Snyder SL (1987) Quantification of gut injury with diamine oxidase activity: development of a fission neutron RBE and measurements with combined injury in mouse models. Radiat Res 112(3):508–516

    Article  Google Scholar 

  14. Li XH, Ha CT, Fu D, Xiao M (2012) Micro-RNA30c negatively regulates REDD1 expression in human hematopoietic and osteoblast cells after gamma-irradiation. PLoS ONE 7(11):e48700. doi:10.1371/journal.pone.0048700

    Article  ADS  Google Scholar 

  15. Grace MB, Singh VK, Rhee JG, Jackson WE 3rd, Kao TC, Whitnall MH (2012) 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis. J Radiat Res 53:840–853. doi:10.1093/jrr/rrs060

    Article  Google Scholar 

  16. Whitnall MH, Elliott TB, Harding RA, Inal CE, Landauer MR, Wilhelmsen CL, McKinney L, Miner VL, Jackson WE 3rd, Loria RM, Ledney GD, Seed TM (2000) Androstenediol stimulates myelopoiesis and enhances resistance to infection in gamma-irradiated mice. Int J Immunopharmacol 22(1):1–14. doi:S0192056199000594 [pii]

    Google Scholar 

  17. Ha CT, Li XH, Fu D, Xiao M, Landauer MR (2013) Genistein nanoparticles protect mouse hematopoietic system and prevent proinflammatory factors after gamma irradiation. Radiat Res 180:316–325. doi:10.1667/RR3326.1

    Article  Google Scholar 

  18. Landauer MR, Srinivasan V, Seed TM (2003) Genistein treatment protects mice from ionizing radiation injury. J Appl Toxicol 23(6):379–385

    Article  Google Scholar 

  19. Miller AC, Cohen S, Stewart M, Rivas R, Lison P (2011) Radioprotection by the histone deacetylase inhibitor phenylbutyrate. Radiat Environ Biophys 50(4):585–596. doi:10.1007/s00411-011-0384-7

    Article  Google Scholar 

  20. Kulkarni S, Singh PK, Ghosh SP, Posarac A, Singh VK (2013) Granulocyte colony-stimulating factor antibody abrogates radioprotective efficacy of gamma-tocotrienol, a promising radiation countermeasure. Cytokine. doi:10.1016/j.cyto.2013.03.009

    Google Scholar 

  21. Krivokrysenko VI, Shakhov AN, Singh VK, Bone F, Kononov Y, Shyshynova I, Cheney A, Maitra RK, Purmal A, Whitnall MH, Gudkov AV, Feinstein E (2012) Identification of granulocyte colony-stimulating factor and interleukin-6 as candidate biomarkers of CBLB502 efficacy as a medical radiation countermeasure. J Pharmacol Exp Ther 343(2):497–508. doi:10.1124/jpet.112.196071

    Article  Google Scholar 

  22. Singh VK, Christensen J, Fatanmi OO, Gille D, Ducey EJ, Wise SY, Karsunky H, Sedello AK (2012) Myeloid progenitors: a radiation countermeasure that is effective when initiated days after irradiation. Radiat Res 177(6):781–791

    Article  Google Scholar 

  23. Singh VK, Singh PK, Wise SY, Seed TM (2011) Mobilized progenitor cells as a bridging therapy for radiation casualties: a brief review of tocopherol succinate-based approaches. Int Immunopharmacol 11(7):842–847. doi:S1567-5769(11)00052-X [pii] 10.1016/j.intimp.2011.01.017

  24. Cary LH, Ngudiankama BF, Salber RE, Ledney GD, Whitnall MH (2012) Efficacy of radiation countermeasures depends on radiation quality. Radiat Res 177:663–675

    Article  Google Scholar 

  25. Kiang JG, Zhai M, Liao P-J, Elliott TB, Gorbunov NV (2014) Ghrelin therapy improves survival after whole-body ionizing irradiation combined with wound or burn: amelioration of leukocytopenia, thrombopenia, splenomegaly, and bone marrow injury. Oxid Med Cell Longev 2014:Article ID 215858

    Google Scholar 

  26. Kiang JG, Fukumoto R (2014) Ciprofloxacin increases survival after ionizing irradiation combined injury: gamma-h2ax formation, cytokine/chemokine, and red blood cells. Health Phys 106(6):720–726. doi:10.1097/hp.0000000000000108

    Article  Google Scholar 

  27. Neta R, Vogel SN, Oppenheim JJ, Douches SD (1986) Cytokines in radioprotection. Comparison of the radioprotective effects of IL-1 to IL-6, GM-CSF and IFN-g. Lymphokine Res 5(suppl. 1):S105–S110

    Google Scholar 

  28. Neta R, Oppenheim JJ, Douches SD (1988) Interdependence of the radioprotective effects of human recombinant interleukin 1 alpha, tumor necrosis factor alpha, granulocyte colony-stimulating factor, and murine recombinant granulocyte-macrophage colony-stimulating factor. J Immunol 140(1):108–111

    Google Scholar 

  29. Allison G (2010) Nuclear disorder: surveying atomic threats. Foreign Aff 89:74–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Whitnall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Whitnall, M.H. (2015). Armed Forces Radiobiology Research Institute: R&D, Training, Crisis Response. Accomplishments, Opportunities and Policy Questions. In: Apikyan, S., Diamond, D. (eds) Nuclear Terrorism and National Preparedness. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9891-4_6

Download citation

Publish with us

Policies and ethics