Skip to main content

Introduction to Hypersonic Flows

  • Chapter
  • First Online:
Theoretical and Applied Aerodynamics
  • 5440 Accesses

Abstract

In the previous chapters, compressibility effects are covered, particularly in the transonic regime where the Mach number is close to one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

A-General References on Hypersonic Flows

  1. Hayes, W., Probstein, R.: Hypersonic Flow Theory. Academic Press, New York (1959)

    MATH  Google Scholar 

  2. Hayes, W., Probstein, R.: Hypersonic Flow Theory, Vol. I: Inviscid Flows. Academic Press, New York (1966)

    MATH  Google Scholar 

  3. Cox, R.N., Crabtree, L.F.: Elements of Hypersonic Aerodynamics. The English University Press, London (1965)

    Google Scholar 

  4. Chernyi, G.G.: Introduction to Hypersonic Flow. Academic Press, New York (1961)

    Google Scholar 

  5. Truitt, R.W.: Hypersonic Aerodynamics. The Ronald Press Company, New York (1959)

    Google Scholar 

  6. Truitt, R.W.: Fundamentals of Aerodynamic Heating. The Ronald Press Company, New York (1960)

    Google Scholar 

  7. Dorrance, W.H.: Viscous Hypersonic Flow. McGraw Hill, New York (1962)

    Google Scholar 

  8. Zierep, J.: Theorie der Schallnahen und der Hyperschallstr\(\ddot{o}\)mungen, Verlag G. Braun, Karlsruhe, Germany (1966)

    Google Scholar 

  9. Anderson, J.: Hypersonic and High-Temperature Gas Dynamics. 2nd edn. AIAA, Reston, Virginia (2006)

    Google Scholar 

  10. Bertin, J.: Hypersonic Aerothermodynamics. AIAA. Reston, Virginia (1994)

    Google Scholar 

  11. Rasmussen, M.: Hypersonic Flow. Wiley, New York (1994)

    MATH  Google Scholar 

  12. Park, C.: Nonequilibrium Hypersonic Aerothermodynamics. Wiley, New York (1990)

    Google Scholar 

  13. Neiland, V.Ya., Bogohepov, V.V., Dudin, G.N., Lipatov, I.I.: Asymptotic Theory of Supersonic Viscous Gas Flows. Elsevier, Amsterdam (2008)

    Google Scholar 

  14. Lunev, V.: Real Gas Flows with High Velocities. CRC Press, Boca Raton, Florida (2010)

    Google Scholar 

  15. Hirschel, E.H.: Basics of Aerothermodynamics. AIAA, Reston, Virginia (2005)

    Google Scholar 

  16. Lees, L.: Hypersonic Flow. In: Proceedings of the 5th International Aeronautical Conference, AIAA, Los Angeles, (1955)

    Google Scholar 

  17. Cheng, H.K.: Recent advances in hypersonic flow research. AIAA J. 1(2), 295–310 (1963)

    Article  MATH  Google Scholar 

  18. Küchemann, D.: Hypersonic Aircrafts and their Aerodynamics Problems. Progress in Aeronautical Sciences, vol. 6. Pergamon Press (1965)

    Google Scholar 

  19. Collar, A.R., Tinkler, J. (eds.): Hypersonic Flow. Academic Press, New York (1960)

    Google Scholar 

  20. Riddle, F. (ed.): Hypersonic Flow Research. Academic Press, New York (1962)

    Google Scholar 

  21. Hall, G. (ed.): Fundamental Phenomena in Hypersonic Flow. Cornell University Press, New York (1966)

    Google Scholar 

  22. Holt, M. (ed.): Basic Developments in Fluid Dynamics, vol. I. Academic Press, New York (1968)

    Google Scholar 

  23. Loh, W.H.T. (ed.): Modern Developments in Gas Dynamics. Plenum Press, New York (1969)

    Google Scholar 

  24. Mikhailov, V.V., Neiland, V.Ya., Sychev, V.V.: The theory of viscous hypersonic flow. Annu. Rev. Fluid Mech. 3, 371–396 (1971)

    Article  ADS  Google Scholar 

  25. Cheng, H.K.: Perspectives on hypersonic viscous flow research. Annu. Rev. Fluid Mech. 25, 455–485 (1993)

    Article  ADS  Google Scholar 

  26. Cheng, H.K., Emanuel, G.: Perspective on hypersonic nonequilibrium flow. AIAA J. 33(3), 385–400 (1995)

    Article  ADS  MATH  Google Scholar 

  27. Cousteix, J., Arnal, D., Aupoix, B., Brazier, J. Ph. Lafon, A.: Shock layers and boundary layers in hypersonic flows. Prog. Aerosp. Sci. 30, 95–212 (1994). see also Cousteix, J., Mauss, J.: Asymptotic Analysis and Boundary Layers. Springer, New York (2007)

    Google Scholar 

  28. Bertin, J., Cummings, R.: Fifty years of hypersonics: where we’ve been, where we’re going. Prog. Aerosp. Sci. 39, 511–536 (2003)

    Article  Google Scholar 

  29. Bogdonoff, S. (ed.): Hypersonic Boundary Layers and Flow Fields. AGARD Conference Proceedings, No. 30 (1968)

    Google Scholar 

  30. Wendt, J.F., Pankhurst, R.C. (eds.): Aerodynamic Problems of Hypersonic Vehicles. AGARD Lecture Series, No. 42 (1972)

    Google Scholar 

  31. Wendt, J.F.: Hypersonic Aerothermodynamics. VKI Lecture Series, Von Karman Institute for Fluid Dynamics -1984-01. Belgium (1984)

    Google Scholar 

  32. Sacher, P.W. (ed.): Aerodynamics of Hypersonic Lifting Vehicles. AGARD Conference Proceedings, No. 428 (1987)

    Google Scholar 

  33. Bignell, P.R., Dujarric, C.: Theoretical and Experimental Methods in Hypersonic Flows. AGARD Conference Proceedings, No. 514 (1993)

    Google Scholar 

  34. Sarma, G.S.R.: Aerothermochemistry for Hypersonic Technology. VKI Lecture Series, Von Karman Institute for Fluid Dynamics -1995-04. Belgium (1995)

    Google Scholar 

  35. Bertin, J., Glowinski, R., Periaux, J. (eds.): Hypersonics, vol. I and II. Birkhäuser, Boston (1989)

    Google Scholar 

  36. Desideri, J., Glowinski, R., Periaux, J. (eds.): Hypersonic Flows for Reentry Problems. Springer, Berlin (1991)

    Google Scholar 

  37. Murthy, T.K.S. (ed.): Computational Methods in Hypersonic Aerodynamics. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  38. Rubin, S., Tannehill, J.: Parabolized/reduced Navier-Stokes computational techniques. Annu. Rev. Fluid Mech. 24, 117–144 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  39. Golovachov, Yu.: Numerical Simulation of Viscous Shock Layer Flows. Kluwer Academic Publishers, Dordrecht (1995)

    Book  MATH  Google Scholar 

  40. Bertin, J., Periaux, J., Ballman, J. (eds.): Advances in Hypersonics: Modeling Hypersonic Flows. Springer, New York (2012)

    Google Scholar 

B-References Cited in the Text

  1. Tsien, H.S.: Similarity laws of hypersonic flows. J. Math. Phys. 25, 247–251 (1946)

    MathSciNet  MATH  Google Scholar 

  2. Linnell, R.D.: Two-dimensional airfoils in hypersonic flow. J. Aerosp. Sci. 16, 22–30 (1949)

    MathSciNet  Google Scholar 

  3. Dorrance, W.H.: Two dimensional airfoils in hypersonic flows. J. Aerosp. Sci. 19, 593–600 (1952)

    MATH  Google Scholar 

  4. Ehret, D., Rossow, V., Stevens, V.: An Analysis of the Applicability of the Hypersonic Similarity Law to the Study of Flow About Bodies of Revolution at Zero Angle of Attack. NACA TN 2250 (1952)

    Google Scholar 

  5. Van Dyke, M.: A Study of Hypersonic Small-Disturbance Theory. NACA report no. 1194 (1954)

    Google Scholar 

  6. Goldsworthy, F.A.: Two-dimensional rotational flow at high mach number past thin aerofoils. Q. J. Mech. Appl. Math. 5, 54–63 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bird, G.A.: Some remarks on the foundation of piston theory and supersonic-hypersonic similarity. J. Aerosp. Sci. 25, 138–139 (1958)

    Article  Google Scholar 

  8. Hamaker, F.M., Wong, T.J.: The Similarity Law for Nonsteady Hypersonic Flows and Requirements for the Dynamical Similarity of Related Bodies in Free Flight, NACA TN No. 2631 (1952)

    Google Scholar 

  9. Lighthill, M.J.: Higher Approximations in General Theory of High Speed Aerodynamics. Princeton University Press, New Jersey (1954)

    Google Scholar 

  10. Kogan, A.: An application of crocco’s stream function to the study of rotational supersonic flow past airfoils. Q. J. Mech. Appl. Math. 11, 1–23 (1958)

    Article  MATH  Google Scholar 

  11. Shen, S.F., Lin, C.C.: On the Attached Curved Shock in Front of a Sharp-Nosed Symmetric Body Placed in a Uniform Stream, NACA TN No. 2505 (1951)

    Google Scholar 

  12. Velesko, L.G., Grodzovskii, G.L., Krashchennikova, N.L : Table of flow parameters for power law bodies of revolution at hypersonic speeds. TsAGI Report (1956)

    Google Scholar 

  13. Sedov, L.: Propagation of strong blast waves. Prikl. Mat. Mekh. 10, 241–250 (1946). See also, Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    Google Scholar 

  14. Gusev, V.N.: Onunsteady self-similar motion of a gas displaced by a piston according to an exponential law. TsAGI Report (1957)

    Google Scholar 

  15. Grodzovskii, G.L.: Certain peculiarities of the flow around bodies at high supersonic velocities. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk (1957)

    Google Scholar 

  16. Chernyi, G.G.: Hypersonic flow around a body by an ideal gas. Izv. Akad. Nauk. SSSR, Otd. Tekn. Nauk 6, 77–85 (1957)

    Google Scholar 

  17. Stanyukovich, K.P.: Unsteady Motion of Continuous Media. Pergamon Press, London (1960)

    Google Scholar 

  18. Lees, L., Kubota, T.: Inviscid hypersonic flow over blunt-nosed slender bodies. J. Aerosp. Sci. 24, 195–202 (1957)

    MATH  Google Scholar 

  19. Mirles, H.: Hypersonic flow over slender bodies associated with power-law shocks. Advances in Applied Mechanics, vol. VII, pp. 1–54. Academic Press, New York (1962)

    Google Scholar 

  20. Bechert, K.: \(\ddot{U}\)ber der Differentialgleichungen der Wellenausbreitungen in Gasen. Ann. Physik 39, 357–372 (1941)

    Article  ADS  MathSciNet  Google Scholar 

  21. Guderley, G.: Starke Kugelige und Zylinderische Verdichtungsst\(\ddot{o}\)sse in der N\(\ddot{a}\)he des Kugelmittelpunktes bzw. der Zylinderasche. Luftfahrtforschung 19, 302–312 (1942)

    MathSciNet  Google Scholar 

  22. Kubota, T.: Inviscid flow over blunt nosed slender bodies. In: Proceedings of the 5th Heat Transfer and Fluid Mechanics Institute Conference, Pasadena (1957)

    Google Scholar 

  23. Busemann, A.: Aerodynamic lift at supersonic speeds. Luftfahrt-Forschung 12(6), 210–220 (1935)

    Google Scholar 

  24. Eggers, A.J., Resknikoff, M.M., Dennis, D.H.: Bodies of revolution having minimum drag at high supersonic speeds. NACA Report No. 1306 (1957)

    Google Scholar 

  25. Lighthill, M.J.: Dynamics of a dissociated gas. J. Fluid Mech. 2, 1–32 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  26. Cole, J.D.: Newtonian flow theory for slender bodies. J. Aerosp. Sci. 24, 448–455 (1957). See also Cole, J.D.: Note on the lift of slender nose shapes according to newtonian theory. J. Aerosp. Sci. 25(6), 399 (1958)

    Google Scholar 

  27. Grimminger, G., Williams, E.P., Young, G.B.W.: Lift on inclined bodies of revolution in hypersonic flow. J. Aerosp. Sci. 17, 675–690 (1950)

    MATH  Google Scholar 

  28. Cole, J.D., Brainerd, J.J.: Slender wings at high angles of attack in hypersonic flows. Hypersonic Flow Research, pp. 321–344. Academic Press, New York (1962)

    Google Scholar 

  29. Ferri, A.: Supersonic Flow Around Circular Cones at Angle of Attack. NACA Report No. 1045 (1951)

    Google Scholar 

  30. Ferri, A., Ness, N., Kaplita, T.: Supersonic flow over conical bodies without axial symmetry. J. Aerosp. Sci. 20, 563–569 (1953)

    MATH  Google Scholar 

  31. Ferri, A.: Supersonic Flows With Shock Waves. General Theory of High Speed Aerodynamics. Princeton University Press, New Jersey (1955)

    Google Scholar 

  32. Guiraud, J.P.: Newtonian flow over a surface-theory and application. In: Collar, A.R., Tinkler, J. (eds.) Hypersonic Flow, pp. 253–296. Butterworths, London (1960)

    Google Scholar 

  33. Stocker, P.M., Mauger, F.E.: Supersonic flow past cones of general cross-section. J. Fluid Mech. 13, 383–399 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Scheuing, R.A., Mead. H.R., Brook, J.W., Melnik, R.E., Hayes, W.D., Gray, K.E., Donaldson, C. Dur and Sullivan, R.D.: Theoretical prediction of pressures in hypersonic flow with special reference to configurations having attached leading-edge shock. ASD Technical Report No. 61–60, USAF, Wright Patterson Air Force Base, Ohio (1962)

    Google Scholar 

  35. Tsien, H.S.: Supersonic flow over inclined body of revolution. J. Aerosp. Sci. 5, 480–483 (1938)

    Google Scholar 

  36. Lighthill, M.J.: Supersonic flow past slender pointed bodies of revolution at Yaw. Q. J. Mech. Appl. Math. 1, 76–89 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  37. Young, G., Sisk, C.: Supersonic flow around cones at large yaw. J. Aerosp. Sci. 19, 111–119 (1952)

    MATH  Google Scholar 

  38. Stone, A.H.: On supersonic flow past a slightly yawing cone. J. Math. Phys. 27, 67–81 (1948)

    MATH  Google Scholar 

  39. Stone, A.H.: On supersonic flow past a slightly yawing cone. Part II. J. Math. Phys. 27, 220–233 (1948)

    Google Scholar 

  40. Willet, J.E.: Supersonic flow at the surface of a circular cone at angle of attack. J. Aerosp. Sci. 27, 907–912 (1962)

    Article  Google Scholar 

  41. Willet, J.E.: A note on the inviscid streamlines at the surface of a yawed cone in supersonic stream. J. Aerosp. Sci. 29, 375–376 (1962)

    Article  Google Scholar 

  42. Holt, M.: A vortical singularity in conical flow, Part 4. Q. J. Mech. Appl. Math. VI, 438–445 (1954)

    Article  MathSciNet  Google Scholar 

  43. Cheng, H.K.: On the structure of vortical layers in supersonic and hypersonic flows. J. Aerosp. Sci. 27, 155–156 (1960)

    Article  MATH  Google Scholar 

  44. Cheng, H.K.: Hypersonic flows past a yawed circular cone and other pointed bodies. J. Fluid Mech. 12, 169–191 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Sychev, V.V.: Three-dimensional hypersonic gas flow past slender bodies at high angles of attack. J. Appl. Math. 24, 296–306 (1960)

    MATH  Google Scholar 

  46. Munson, A.: The vortical layer on an inclined cone. J. Fluid Mech. 20, 625–643 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Woods, B.A.: The flow close to the surface of a circular cone at incidence to a supersonic stream. Aerosp. Q. XIII, 115–128 (1962)

    ADS  Google Scholar 

  48. Woods, B.A.: The supersonic flow past a circular cone at incidence. Aeronautical research council R and M no. 3413. London (1965)

    Google Scholar 

  49. Melnik, R.: Newtonian entropy layer in the vicinity of a conical symmetry plane. AIAA J. 3(3), 520–522 (1965)

    Article  MathSciNet  Google Scholar 

  50. Melnik, R.: Vortical singularities in conical flow. AIAA J. 5(4), 631–637 (1967)

    Article  ADS  MATH  Google Scholar 

  51. Moretti, G.: Inviscid flowfield about a pointed cone at an angle of attack. AIAA J. 5(4), 789–791 (1967)

    Article  ADS  Google Scholar 

  52. Dwyer, H.A.: Boundary layer on a hypersonic sharp cone at small angle of attack. AIAA J. 9(2), 277–284 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  53. Fletcher, C.: Vortical singularity behind a highly yawed cone. AIAA J. 13(8), 1073–1078 (1975)

    Article  ADS  Google Scholar 

  54. Bulakh, B.M.: Nonlinear Conical Flow. Delft University Press, Delft (1985)

    MATH  Google Scholar 

  55. Olivier, H.: A theoretical model for the shock stand-off distance in frozen equilibrium flows. J. Fluid Mech. 413, 345–353 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Lin, C.C., Rubinov, S.I.: On the flow behind curved shocks. J. Math. Phys. 27(2), 105–129 (1948)

    MathSciNet  MATH  Google Scholar 

  57. Shen, S.F., Lin, C.C.: On the Attached Curved Shock in Front of a Sharp-Nosed Axially Symmetric Body Placed in a Uniform Stream. NACA TN No. 2505 (1951)

    Google Scholar 

  58. Cabannes, H.: Tables pour la d\(\acute{e}\)termination des ondes de choc d\(\acute{e}\)tach\(\acute{e}\)es. Rech. A\(\acute{e}\)ronaut. 49, 11–15 (1956)

    Google Scholar 

  59. Cabannes, H.: Th\(\acute{e}\)orie des Ondes de Choc, Encyclopedia of Physics, vol. IX, III. Springer, Berlin (1960)

    Google Scholar 

  60. Van Dyke, M.: Perturbation Methods in Fluid Mechanics. Parabolic Press, Stanford (1975)

    MATH  Google Scholar 

  61. Van Dyke, M.: The supersonic blunt body problem-review and extension. J. Aerosp. Sci. 25, 485–496 (1958)

    Article  MATH  Google Scholar 

  62. Mangler, K.W.: The Calculation of the Flow Field Between a Blunt Body and Bow Wave. Hypersonic Flow. Butterworths Scientific Publications, London (1960)

    Google Scholar 

  63. Vaglio-Laurin, R.: On the PLK method and the supersonic blunt-body problem. J. Aerosp. Sci. 29, 185–206 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  64. Garabedian, P., Lieberstein, H.M.: On the numerical calculation of detached bow shock waves in hypersonic flow. J. Aerosp. Sci. 25, 109–118 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  65. Lin, C.C.: A note on Garabedian’s paper “numerical construction of detached shock waves”. J. Math. Phys. 36(2), 206–209 (1957)

    MATH  Google Scholar 

  66. Van Dyke, M.: The blunt-body problem revisited. Fundamental Phenomena in Hypersonic Flow. Cornell University Press, New York (1966)

    Google Scholar 

  67. Vaglio-Laurin, R., Ferri, A.: Theoretical investigation of the flow field about blunt-nosed bodies in supersonic flight. J. Aerosp. Sci. 25, 761–770 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  68. Belotserkovskii, O., Chushkin, P.: Supersonic flow past blunt bodies. Arch. Mech. Stos. 14, 461–490 (1962)

    Google Scholar 

  69. Holt, M.: Numerical Methods in Fluid Dynamics. Springer, Berlin (1984)

    Book  Google Scholar 

  70. Dorodnitsyn, A.: Numerical methods in gas dynamics. Arch. Mech. Stos. 12, 13–27 (1960)

    MathSciNet  MATH  Google Scholar 

  71. Mitchell, A.R., McCall, F.: The rotational field behind a bow shock wave in axially symmetric flow using relaxation methods. Proc. R. Soc. Edinb. Sect. A 53, 371–380 (1952)

    MathSciNet  Google Scholar 

  72. Richtmeyer, R., Morton, W.: Difference Methods for Initial-Value Problems. Wiley, New York (1967)

    Google Scholar 

  73. Pletcher, R., Tannehill, J., Anderson, D.: Computational Fluid Mechanics and Heat Transfer. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  74. Emmons, H.W.: The Flow of a Compressible Fluid Past a Symmetrical Airfoil in a Wind Tunnel and in Free Air. NACA TN No. 1746 (1948)

    Google Scholar 

  75. Steger, J.L.: Application of cyclic relaxation procedures to transonic flow fields. Ph.D. Dissertation, Iowa State University (1969)

    Google Scholar 

  76. Hafez, M., Lovell, D.: Numerical solution of transonic stream function equation. AIAA J. 21(3), 327–335 (1983)

    Article  ADS  MATH  Google Scholar 

  77. Hirsch, C.: Numerical Computation of Internal and External Flows, vol. I and II. Wiley, New York (1990)

    MATH  Google Scholar 

  78. Van Leer, B.: Progress in multi-dimensional upwind differencing. Lect. Notes Phys. 414, 1–26 (1990)

    Article  Google Scholar 

  79. Roe, P.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Osher, S.: Riemann solvers, entropy conditions and difference approximations. SIAM J. Numer. Anal. 21, 217–235 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Chernyi, G.G.: The effect of slight blunting of the leading edge of a profile on flow at high supersonic speeds. Izv. Akad. nauk sssr, otd. tekhn. nauk no, 4 (1958)

    Google Scholar 

  82. Cheng, H.K.: Hypersonic Flow with Combined Leading-Edge Bluntness and Boundary Layer Displacement Effect. Cornell Aero. Lab., Report, No. AF-1285-A-4 (1960)

    Google Scholar 

  83. Guiraud, J.P.: \(\acute{E}\)coulement hypersonique d’un fluide parfait sur une plaque plane comportant un bord d’Attaque d’\(\acute{E}\)paisseur finie. C. R. Acad. Sci., Paris. 246, 2842–2845 (1958)

    Google Scholar 

  84. Yakura, J.K.: Theory of entropy layers and nose bluntness in hypersonic flow. Hypersonic Flow Research. Academic Press, New York (1962)

    Google Scholar 

  85. Sychev, V.V.: On the theory of hypersonic gas flow with a power law shock wave. J. Appl. Math. Mech. 24, 756–764 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  86. White, F.: Viscous Fluid Flow. McGraw Hill, New York (1974)

    MATH  Google Scholar 

  87. Hayes, W., Probstein, R.: Viscous hypersonic similitude. J. Aerosp. Sci. 26, 815–824 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  88. Liepmann, H., Roshko, A.: Elements of Gas Dynamics. Wiley, New York (1957)

    Google Scholar 

  89. Shapiro, A.: The Dynamics and Thermodynamics of Compressible Fluid Flow. The Ronald Company, New York (1954)

    MATH  Google Scholar 

  90. Schlichting, H.: Boundary Layer Theory. McGraw Hill, New York (1979)

    MATH  Google Scholar 

  91. Lees, L.: On the boundary layer equations in hypersonic flow and their approximate solutions. J. Aerosp. Sci. 20, 143–145 (1953)

    MathSciNet  MATH  Google Scholar 

  92. Cheng, H.K.: Investigations Related to Hypersonic Flow and Boundary Layer Phenomena. Cornell Aero. Lab. Report, No. AF-1180-A-1 (1957)

    Google Scholar 

  93. Moore, F.K.: On the local Flat Plate Similarity in the Hypersonic Boundary Layer. Cornell Aero. Lab. Report, No. AF-1285-A-2 (1960)

    Google Scholar 

  94. Blottner, F.: Computational Techniques for Boundary Layers. AGARD lecture Series No. 73. VKI, Belgium (1975)

    Google Scholar 

  95. Van Dyke, M.: Higher approximations in boundary-layer theory. J. Fluid Mech. 19, 145–159 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Le Balleur, J.Cl.: Numerical flow calculation and viscous-inviscid interaction techniques. Pineridge Press, U.K, Viscous Flows (1984)

    Google Scholar 

  97. Monnoyer, F.: Hypersonic boundary layer flows, Flows at large reynolds numbers. Computational Mechanics Publication, Southhampton, U.K (1997)

    Google Scholar 

  98. Lee, R., Cheng, H.K.: On the outer-edge problem of a hypersonic boundary layer. J. Fluid Mech. 38, 161–179 (1969)

    Article  ADS  MATH  Google Scholar 

  99. Bush, W.: Hypersonic strong-interaction similarity solutions for flow past a flat plate. J. Fluid Mech. 25, 51–64 (1966). See also vol. 29, 349–359

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. Novack, B.B., Cheng, H.K.: Numerical Analysis and Modeling of Slip Flows at Very High Mach Numbers. Lecture Notes in Physics, vol. 8. Springer, Berlin (1970)

    Google Scholar 

  101. Rudman, R., Rubin, S.: Hypersonic viscous flow over slender bodies with sharp leading edges. AIAA J. 6, 1883–1889 (1968). Also AIAA Paper 68–3

    Article  ADS  MATH  Google Scholar 

  102. Rubin, S., Koshla, P.: A review of reduced navier-stokes computations for compressible viscous flows. J. Comput. Syst. Eng. 1, 549–562 (1990)

    Article  Google Scholar 

  103. Vigneron, Y.C., Rakich, J.V., Tannehill, J.: Calculation of Supersonic Viscous Flow Over Delta Wings with Sharp Subsonic leading Edges, AIAA Paper 78–1137 (1978). Also NASA TM-78500

    Google Scholar 

  104. Lubard, S.C., Helliwell, W.S.: Calculation of the flow on a cone at high angle of attack. AIAA J. 12, 965–974 (1974). Also AIAA Paper 75–149

    Article  ADS  MATH  Google Scholar 

  105. Stewartson, K.: Multistructured boundary layers on flat plates and related bodies. Adv. Appl. Mech. 14, 145–239 (1974)

    Article  ADS  Google Scholar 

  106. Rothmayer, A.P., Smith, F.T.: High Reynolds number asymptotic theories. Handbook of Fluid Dynamics. CRC Press, Boca Raton (1998)

    Google Scholar 

  107. Sychev, V.V.: On laminar separation. Fluid Dyn. 7(3), 407–417 (1972)

    Article  ADS  Google Scholar 

  108. Brown, S., Cheng, H.K., Lee, C.J.: Inviscid-viscous interaction on triple-deck scales in a hypersonic flow with strong wall cooling. J. Fluid Mech. 220, 309–337 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. Lighthill, M.J.: On boundary layer and upstream influence. Proc. R. Soc. Lond. Ser. A, 478–507 (1953)

    Google Scholar 

  110. Ladyzhenskii, M.D.: Hypersonic area rule. AIAA J. 1(11), 2696–2698 (1963)

    Article  Google Scholar 

  111. Cheng, H.K.: Viscous and Inviscid Slender-Body Problems of Hypersonic Flow. University of Southern California, California, Report, USC-1408 (1969)

    Google Scholar 

  112. Krasovskii, V.M.: Experimental study of hypersonic helium flow over blunt-nosed bodies. Inzh. Zh. 5(2), 249–253 (1965)

    MathSciNet  Google Scholar 

  113. Hayes, W.: On hypersonic similitude. Q. Appl. Math. 9(1), 105–106 (1947)

    Google Scholar 

  114. Viviand, H.: Hypersonic flows for reentry problems. Similitude in Hypersonic Aerodynamics. Springer, Berlin (1991)

    Chapter  Google Scholar 

  115. Oswatitsch, K.: Similarity and equivalence in compressible flow. Advances in Applied Mechancis, vol. VI, pp. 153–271. Academic Press, New York (1960)

    Google Scholar 

  116. Townend, L.H.: Lectures on Waveriders. VKI Lecture Series 1984–01. Brussels, Belgium (1984)

    Google Scholar 

  117. Nonweiler, T.R.F.: Delta wings of shapes amenable to exact shock wave theory. J. R. Aerosp. Soc. Ser. A 67(39), (1963)

    Google Scholar 

  118. Maikapar, G.I.: On the wave drag of nonaxisymmetric bodies at supersonic speeds. J. Appl. Math. Mech. 23, 528–531 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  119. Gonor, A.L.: Exact solution of the problem of supersonic flow of gas past some three-dimensional bodies. J. Appl. Math. Mech. 28, 1178–1181 (1964)

    Article  MathSciNet  Google Scholar 

  120. Peckham, D.H.: On Three-Dimensional Bodies of Delta Planform Which Can Support Plane Attached Shock Waves. ARC CP 640. HMSO, London (1962)

    Google Scholar 

  121. Jones, J.G., Moore, K.C., Pike, J., Roe, P.: A method for designing lifting configurations for high supersonic speeds using axisymmetric flow fields. Ingenieur-Archiv. 37(1), 56–72 (1968)

    Article  MATH  Google Scholar 

  122. Anderson, J., et al.: Hypersonic waveriders for high altitude applications, AIAA Paper 91–0530 (1991)

    Google Scholar 

  123. Eggers, A.J., Resnikoff, M.M., Dennis, D.H.: Bodies of revolution having minimum drag at high supersonic air speeds. NACA Report No. 1306 (1957)

    Google Scholar 

  124. Roe, P.: Aerodynamic Problems of Hypersonic Vehicles. Lecture 1–5, AGARD-LS, 42, vol. 1 (1972)

    Google Scholar 

  125. Koppenwalter, G.: Hypersonic aerothermodynamics. Fundamentals of Hypersonics: Aerodynamics and Heat transfer. VKI Lecture Series 1984–01. (1984)

    Google Scholar 

  126. Sobieczky, H., et al.: Hypersonic waverider design from given shock wave. first int waverider symposium, University of Maryland, (1990)

    Google Scholar 

  127. Rasumussen, M.L., Stevens, D.: On waverider shapes applied to aerospace plane forebody configurations, AIAA Paper 87–2550 (1987)

    Google Scholar 

  128. Miele, A.: Theory of Optimum Aerodynamic Shapes. Academic Press, New York (1965)

    MATH  Google Scholar 

  129. Cole, J.D.: Frontiers of Computational Fluid Dynamics. Optimal Hypersonic Conical Wings. World Scientific, Singapore (1998)

    Google Scholar 

  130. Long, L.N.: The Off-Design Performance of Hypersonic Waveriders. AGARD Conference Proceedings No. 428 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Chattot .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chattot, J.J., Hafez, M.M. (2015). Introduction to Hypersonic Flows. In: Theoretical and Applied Aerodynamics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9825-9_12

Download citation

Publish with us

Policies and ethics