Skip to main content

Sponge Implant Model of Inflammatory Angiogenesis

  • Chapter
Handbook of Vascular Biology Techniques

Abstract

Inflammation, angiogenesis and fibrogenesis are key components of physiological (wound repair) and pathological conditions (rheumatoid arthritis, psoriasis, cancer). These processes can be induced using implantation of biomaterials allowing, therefore the characterization of cellular and molecular events involved in the development of the fibrovascular tissue. Damage to tissue is resolved through a series of overlapping phases (inflammation, cell proliferation/migration and tissue remodeling) leading to variable outcomes depending on various systemic and/or local factors. The implantation technique has been used for the assessment of the various phases of normal healing as well as the foreign body reaction. This approach has characterized the mechanisms regulating the response to injury represented by the implant and the influence of a number of factors (pathological conditions, genetic manipulation). In addition, modulation of the process by potential therapeutic compounds has been extensively studied using synthetic matrix-based methodology. We provide here a detailed description of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grindlay JH, Waugh JM (1951) Plastic sponge which acts as a framework for living tissue; experimental studies and preliminary report of use to reinforce abdominal aneurysms. AMA Arch Surg 63:288–297

    Article  CAS  PubMed  Google Scholar 

  2. Woessner JF, Boucek RJ (1959) Enzyme activities of rat connective tissue obtained from subcutaneously implanted polyvinyl sponge. J Biol Chem 234:3296–3300

    CAS  PubMed  Google Scholar 

  3. Edwards RH, Sarmenta SS, Hass GM (1960) Stimulation of granulation tissue growth by tissue extracts. Study in intramuscular wounds in rabbits. Arch Pathol 69:286–302

    CAS  PubMed  Google Scholar 

  4. Paulini K, Körner B, Beneke G et al (1974) A quantitative study of the growth of connective tissue: investigations on implanted polyester-polyurethane sponges. Connect Tissue Res 2:257–264

    Article  CAS  PubMed  Google Scholar 

  5. Hølund B, Clemmensen I, Junker P et al (1982) Fibronectin in experimental granulation tissue. Acta Pathol Microbiol Immunol Scand A 90:159–165

    PubMed  Google Scholar 

  6. Bollet AJ, Goodwin JF, Simpson WF et al (1958) Mucopolysaccharide, protein and desoxyribosenucleic acid concentration of granulation tissue induced by polyvinyl sponges. Proc Soc Exp Biol Med 99:418–421

    Article  CAS  PubMed  Google Scholar 

  7. Hølund B, Junker P, Garbarsch C et al (1979) Formation of granulation tissue in subcutaneously implanted sponges in rats. A comparison between granulation tissue developed in viscose cellulose sponges (Visella) and in polyvinyl alcohol sponges (Ivalon). Acta Pathol Microbiol Scand A 87A:367–374

    PubMed  Google Scholar 

  8. Davidson JM, Klagsbrun M, Hill KE et al (1985) Accelerated wound repair, cell proliferation, and collagen accumulation are produced by a cartilage-derived growth factor. J Cell Biol 100:1219–1227

    Article  CAS  PubMed  Google Scholar 

  9. Bailey PJ (1988) Sponge implants as models. Methods Enzymol 162:327–334

    Article  CAS  PubMed  Google Scholar 

  10. Belo AV, Barcelos LS, Ferreira MA et al (2004) Inhibition of inflammatory angiogenesis by distant subcutaneous tumor in mice. Life Sci 74:2827–2837

    Article  CAS  PubMed  Google Scholar 

  11. Ferreira MA, Barcelos LS, Campos PP et al (2004) Sponge-induced angiogenesis and inflammation in PAF receptor-deficient mice (PAFR-KO). Br J Pharmacol 141:1185–1192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ford-Hutchinson AW, Walker JA, Smith JA (1977) Assessment of anti-inflammatory activity by sponge implantation techniques. J Pharmacol Methods 1:3–7

    Article  Google Scholar 

  13. Mahadevan V, Hart IR, Lewis GP (1989) Factors influencing blood supply in wound granuloma quantitated by a new in vivo technique. Cancer Res 49:415–419

    CAS  PubMed  Google Scholar 

  14. Andrade SP, Bakhle YS, Hart I et al (1992) Effects of tumour cells on angiogenesis and vasoconstrictor responses in sponge implants in mice. Br J Cancer 66:821–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lage AP, Andrade SP (2000) Assessment of angiogenesis and tumor growth in conscious mice by a fluorimetric method. Microvasc Res 59:278–285

    Article  CAS  PubMed  Google Scholar 

  16. Andrade SP, Hart IR, Piper PJ (1992) Inhibitors of nitric oxide synthase selectively reduce flow in tumor-associated neovasculature. Br J Pharmacol 107:1092–1095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Mendes JB, Campos PP, Ferreira MA et al (2007) Host response to sponge implants differs between subcutaneous and intraperitoneal sites in mice. J Biomed Mater Res B Appl Biomater 83:408–415

    Article  PubMed  Google Scholar 

  18. McGrath JC, Arribas S, Daly CJ (1996) Fluorescent ligands for the study of receptors. Trends Pharmacol Sci 17:393–399

    Article  CAS  PubMed  Google Scholar 

  19. Andrade SP, Machado RD, Teixeira AS et al (1997) Sponge-induced angiogenesis in mice and the pharmacological reactivity of the neovasculature quantitated by a fluorimetric method. Microvasc Res 54:253–261

    Article  CAS  PubMed  Google Scholar 

  20. Andrade SP, Vieira LB, Bakhle YS et al (1992) Effects of platelet activating factor (PAF) and other vasoconstrictors on a model of angiogenesis in the mouse. Int J Exp Pathol 73:503–513

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Andrade SP, Cardoso CC, Machado RD et al (1996) Angiotensin-II-induced angiogenesis in sponge implants in mice. Int J Microcirc Clin Exp 16:302–307

    Article  CAS  PubMed  Google Scholar 

  22. Hu DE, Hiley CR, Smither RL et al (1995) Correlation of 133Xe clearance, blood flow and histology in the rat sponge model for angiogenesis. Further studies with angiogenic modifiers. Lab Invest 72:601–610

    CAS  PubMed  Google Scholar 

  23. Buckley A, Davidson JM, Kamerath CD et al (1985) Sustained release of epidermal growth factor accelerates wound repair. Proc Natl Acad Sci U S A 82:7340–7344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Plunkett ML, Hailey JA (1990) An in vivo quantitative angiogenesis model using tumor cells entrapped in alginate. Lab Invest 62:510–517

    CAS  PubMed  Google Scholar 

  25. Belo AV, Barcelos LS, Teixeira MM et al (2004) Differential effects of antiangiogenic compounds in neovascularization, leukocyte recruitment, VEGF production, and tumor growth in mice. Cancer Invest 22:723–729

    Article  CAS  PubMed  Google Scholar 

  26. Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite and [15 N] nitrate in biological fluids. Anal Biochem 126:131–135

    Article  CAS  PubMed  Google Scholar 

  27. Campos PP, Bakhle YS, Andrade SP (2008) Mechanisms of wound healing responses in lupus-prone New Zealand White mouse strain. Wound Repair Regen 16:416–424

    Article  PubMed  Google Scholar 

  28. Marques SM, Campos PP, Castro PR et al (2011) Genetic background determines mouse strain differences in inflammatory angiogenesis. Microvasc Res 82:246–252

    Article  CAS  PubMed  Google Scholar 

  29. Gavrieli Y, Sherman Y, Ben-Basson SA (1992) Identification of programed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  30. Campos PP, Vasconcelos AC, Ferreira MA et al (2011) Alterations in the dynamics of inflammation, proliferation and apoptosis in subcutaneous implants of lupus-prone mice. Histol Histopathol 26:433–442

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grant from FAPEMIG and CNPq-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Passos Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Andrade, S.P., Campos, P.P., Ferreira, M.A.N.D. (2015). Sponge Implant Model of Inflammatory Angiogenesis. In: Slevin, M., McDowell, G. (eds) Handbook of Vascular Biology Techniques. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9716-0_11

Download citation

Publish with us

Policies and ethics