Skip to main content

Systems Approaches to Study Infectious Diseases

  • Chapter
  • First Online:
Systems and Synthetic Biology

Abstract

Exposure to infectious agents can either lead to active disease or containment or killing of the pathogen. Outcome of an infectious disease is determined by the complex interplay between the host and the pathogen. Therefore, understanding the crosstalk between the host and the pathogen during infection is crucial to identify molecules that are important for the spread or suppression of the disease and for identification of drug targets. Both the host and the pathogen have several mechanisms for countering each other thereby adding layers of complexity to the host-pathogen interplay. Reconstructing mathematical models of complex processes such as cell regulations, signal transductions and host-pathogen interactions provide a detailed understanding of the various interactions and crosstalks occuring in a biological system and thus form a platform to study the system as a whole. Various experimental methods in functional genomics and proteomics as well as computational approaches have been developed over the years that help in building and modeling the biological systems. These approaches have proved quite helpful in identifying drug targets, generating hypotheses rationalizing and finally predicting the cause and final outcome of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aderem A, Adkins JN, Ansong C, Galagan J, Kaiser S, Korth MJ, Law GL, McDermott JG, Proll SC, Rosenberger C et al (2011) A systems biology approach to infectious disease research: innovating the pathogen-host research paradigm. mBio 2(1):e00325–00310

    Google Scholar 

  • Albert R (2007) Network inference, analysis, and modeling in systems biology. Plant Cell 19(11):3327–3338

    Google Scholar 

  • An GC, Faeder JR (2009) Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math Biosci 217(1):53–63

    Google Scholar 

  • Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, Olson PD, Projan SJ, Dunman PM (2006) Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188(19):6739–6756

    Google Scholar 

  • Asaduzzaman M, Ryan ET, John M, Hang L, Khan AI, Faruque A, Taylor RK, Calderwood SB, Qadri F (2004) The major subunit of the toxin-coregulated pilus TcpA induces mucosal and systemic immunoglobulin A immune responses in patients with Cholera caused by Vibrio cholerae O1 and O139. Infect Immun 72(8):4448–4454

    Google Scholar 

  • Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS (2009) PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 37(Suppl 1):D539–D543

    Google Scholar 

  • Beste DJV, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J (2007) GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol 8(5):R89

    Google Scholar 

  • Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17):3289–3291

    Google Scholar 

  • Boele J, Olivier BG, Teusink B (2012) FAME, the Flux Analysis and Modeling Environment. BMC Syst Biol 6:8

    Google Scholar 

  • Bogard RW, Davies BW, Mekalanos JJ (2012) MetR-regulated Vibrio cholerae metabolism is required for virulence. MBio 3(5):e00236–12

    Google Scholar 

  • Bordbar A, Lewis NE, Schellenberger J, Palsson BØ, Jamshidi N (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6(1):422

    Google Scholar 

  • Boshoff HIM, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism novel insights into drug mechanisms of action. J Biol Chem 279(38):40174–40184

    Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544

    Google Scholar 

  • Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, Cheng TY, Moody DB, Murray M, Galagan JE (2009) Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 5(8):e1000489

    Google Scholar 

  • Colvin J, Monine MI, Gutenkunst RN, Hlavacek WS, Von Hoff DD, Posner RG (2010) RuleMonkey: software for stochastic simulation of rule-based models. BMC Bioinformatics 11(1):404

    Google Scholar 

  • Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24(18):2044–2050

    Google Scholar 

  • da Hora Junior BT Poloni Jde F Lopes MA Dias CV Gramacho KP Schuster I Sabau X Cascardo JC Mauro SM, Gesteira Ada S et al (2012) Transcriptomics and systems biology analysis in identification of specific pathways involved in cacao resistance and susceptibility to witches` broom disease. Mol BioSyst 8(5):1507–1519

    Google Scholar 

  • Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23(9):324

    Google Scholar 

  • Danos V, Feret J, Fontana W, Harmer R, Krivine J (2008) Rule-based modelling, symmetries, refinements. Form Methods Syst Biol 5054:103–122

    Google Scholar 

  • Day J, Schlesinger LS, Friedman A (2010) Tuberculosis research: going forward with a powerful “translational systems biology” approach. Tuberculosis 90(1):7–8

    Google Scholar 

  • de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103

    Google Scholar 

  • Dharia N, ChatterjeeA, WinzelerE (2010) Genomics and systems biology in malaria drug discovery. Curr Opin Investig Drugs 11(2):131 (London, England: 2000)

    Google Scholar 

  • Eklund SE, Snider RM, Wikswo J, Baudenbacher F, Prokop A, Cliffel DE (2006) Multianalyte microphysiometry as a tool in metabolomics and systems biology. J Electroanal Chem 587(2):333–339

    Google Scholar 

  • Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ (2008) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7(2):129–143

    Google Scholar 

  • Forst CV (2006) Host-pathogen systems biology. Drug Discov Today 11(5–6):220–227

    Google Scholar 

  • Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1(5):159–162

    Google Scholar 

  • Galagan JE, Sisk P, Stolte C, Weiner B, Koehrsen M, Wymore F, Reddy TB, Zucker JD, Engels R, Gellesch M et al (2010) TB database 2010: overview and update. Tuberculosis 90(4):225–235

    Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906):498–511

    Google Scholar 

  • Ghosh S, Prasad KVS, Vishveshwara S, ChandraN(2011) Rule-based modelling of iron homeostasis in tuberculosis. Mol Biosyst 7(10):2750–2768

    Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Google Scholar 

  • Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK et al (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307(5706):82–86

    Google Scholar 

  • Hill DR, Ford L, Lalloo DG (2006) Oral cholera vaccines: use in clinical practice. Lancet Infect Dis 6(6):361–373

    Google Scholar 

  • Hlavacek WS, Faeder JR (2009) The complexity of cell signaling and the need for a new mechanics. Sci Signal 2(81):pe46

    Google Scholar 

  • Hood L, Perlmutter RM (2004) The impact of systems approaches on biological problems in drug discovery. Nat Biotechnol 22(10):1215–1217

    Google Scholar 

  • Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a complex pathway simulator. Bioinformatics 22(24):3067–3074

    Google Scholar 

  • Hoppe AD, Seveau S, Swanson JA (2009) Live cell fluorescence microscopy to study microbial pathogenesis. Cell Microbiol 11(4):540–550

    Google Scholar 

  • Hoppe A, Hoffmann S, Gerasch A, Gille C, Holzhütter HG (2011) FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinformatics 12(1):28

    Google Scholar 

  • Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ (2005) Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310(5748):670–674

    Google Scholar 

  • Huthmacher C, Hoppe A, Bulik S, Holzhutter HG (2010) Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst Biol 4:120

    Google Scholar 

  • Ibargüen-Mondragón E, Esteva L, Chávez-Galán L (2011) A mathematical model for cellular immunology of tuberculosis`. J Math Biosci Eng 8(4):973–986

    Google Scholar 

  • Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(suppl 1):S233–S240

    Google Scholar 

  • Jamshidi N, Palsson B (2007) Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 1(1):26

    Google Scholar 

  • Johanns TM, Ertelt JM, Rowe JH, Way SS (2010) Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection. PLoS Pathog 6(8):e1001043

    Google Scholar 

  • Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Türbachova I, Eberl M, Zeidler J, Lichtenthaler HK (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285(5433):1573–1576

    Google Scholar 

  • Kaatz GW, McAleese F, Seo SM (2005) Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother 49(5):1857–1864

    Google Scholar 

  • Kanjilal S, Citorik R, LaRocque RC, Ramoni MF, Calderwood SB (2010) A systems biology approach to modeling Vibrio cholerae gene expression under virulence-inducing conditions. J Bacteriol 192(17):4300–4310

    Google Scholar 

  • Kaper JB, Morris JG, Jr, Levine MM (1995) Cholera. Clin Microbiol Rev 8(1):48–86

    Google Scholar 

  • Kirschner DE, Young D, Flynn JAL (2010) Tuberculosis: global approaches to a global disease. Curr Opin Biotechnol 21(4):524–531

    Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Google Scholar 

  • Konjufca V, Miller MJ (2009) TwoâŁphoton microscopy of host–pathogen interactions: acquiring a dynamic picture of infection in vivo. Cell Microbiol 11(4):551–559

    Google Scholar 

  • Kruh NA, Troudt J, Izzo A, Prenni J, Dobos KM (2010) Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. PLoS One 5(11):e13938

    Google Scholar 

  • Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KVS (2010) Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140(5):731–743

    Google Scholar 

  • Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K (2003) Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49(3):807–821

    Google Scholar 

  • Lakshmanan M, Koh G, Chung BK, Lee DY (2014) Software applications for flux balance analysis. Brief Bioinform 15(1):108–122

    Google Scholar 

  • Latendresse M, Krummenacker M, Trupp M, Karp PD (2012) Construction and completion of flux balance models from pathway databases. Bioinformatics 28(3):388–396

    Google Scholar 

  • Lew JM, Kapopoulou A, Jones LM, Cole ST (2011) TubercuList–10 years after. Tuberculosis 91(1):1–7

    Google Scholar 

  • MacPherson DW, Gushulak BD, Baine WB, Bala S, Gubbins PO, Holtom P, Segarra-Newnham M (2009) Population mobility, globalization, and antimicrobial drug resistance. Emerg Infect Dis 15(11):1727–1732

    Google Scholar 

  • Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein–protein interactions from genome sequences. Science 285(5428):751–753

    Google Scholar 

  • Marino S, El-Kebir M, Kirschner D (2011) A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis. J Theor Biol 280(1):50–62

    Google Scholar 

  • Maus C, Rybacki S, Uhrmacher A (2011) Rule-based multi-level modeling of cell biological systems. BMC Syst Biol 5(1):166

    Google Scholar 

  • McNicholl JM, Downer MV, Udhayakumar V, Alper CA, Swerdlow DL (2000) Host–pathogen interactions in emerging and re-emerging infectious diseases: a genomic perspective of tuberculosis, malaria, human immunodeficiency virus infection, hepatitis B, and cholera. Annu Rev Public Health 21:15–46

    Google Scholar 

  • Nelson EJ, Harris JB, Morris JG Jr, Calderwood SB, Camilli A (2009) Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 7(10):693–702

    Google Scholar 

  • Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz JD, Llinás M (2009) Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe 5(2):191–199

    Google Scholar 

  • Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Google Scholar 

  • Padiadpu J, Vashisht R, Chandra N (2010) Protein–protein interaction networks suggest different targets have different propensities for triggering drug resistance. Syst Synth Biol 4(4):311–322

    Google Scholar 

  • Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 96(8):4285–4288

    Google Scholar 

  • Pieters J (2008) Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3(6):399–407

    Google Scholar 

  • Pinney JW, Westhead DR, McConkey GA (2003) Petri Net representations in systems biology. Biochem Soc Trans 31(Pt 6):1513–1515

    Google Scholar 

  • Plata G, Hsiao TL, Olszewski KL, Llinas M, Vitkup D (2010) Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network. Mol Syst Biol 6:408

    Google Scholar 

  • Plikat U, Voshol H, Dangendorf Y, Wiedmann B, Devay P, Muller D, Wirth U, Szustakowski J, Chirn GW, Inverardi B et al (2007) From proteomics to systems biology of bacterial pathogens: approaches, tools, and applications. Proteomics 7(6):992–1003

    Google Scholar 

  • Rachman H, Strong M, Schaible U, Schuchhardt J, Hagens K, Mollenkopf H, Eisenberg D, Kaufmann SHE (2006) Mycobacterium tuberculosis gene expression profiling within the context of protein networks. Microbes Infect 8(3):747–757

    Google Scholar 

  • Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10(4):435–449

    Google Scholar 

  • Raman K, Bhat AG, Chandra N (2010) A systems perspective of host–pathogen interactions: predicting disease outcome in tuberculosis. Mol Biosyst 6(3):516–530

    Google Scholar 

  • Raman K, Rajagopalan P, Chandra N (2005) Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLoS Comput Biol 1(5):e46

    Google Scholar 

  • Raman K, Rajagopalan P, Chandra N (2006) Principles and practices of pathway modelling. Curr Bioinform 1(2):147–160

    Google Scholar 

  • Raman K, Yeturu K, Chandra N (2008) targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2(1):109

    Google Scholar 

  • Rappuoli R, Aderem A (2011) A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature 473(7348):463–469

    Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555

    Google Scholar 

  • Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48(1):77–84

    Google Scholar 

  • Sauro H (2004) An introduction to biochemical modeling using JDesigner. Keck Graduate Institute, Claremont

    Google Scholar 

  • Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc 6(9):1290–1307

    Google Scholar 

  • Schlatter R, Schmich K, Vizcarra IA, Scheurich P, Sauter T, Borner C, Ederer M, Merfort I, Sawodny O (2009) ON/OFF and beyond-a boolean model of apoptosis. PLoS Comput Biol 5(12):e1000595

    Google Scholar 

  • Schluger NW, Rom WN (1998) The host immune response to tuberculosis. Am J Respir Crit Care Med 157(3):679–691

    Google Scholar 

  • Schmidt F, Donahoe S, Hagens K, Mattow J, Schaible UE, Kaufmann SHE, Aebersold R, Jungblut PR (2004) Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol Cell Proteomics 3(1):24–42

    Google Scholar 

  • Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99(23):15112–15117

    Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Google Scholar 

  • Shin S, Desai SN, Sah BK, Clemens JD (2011) Oral vaccines against cholera. Clin Infect Dis 52(11):1343–1349

    Google Scholar 

  • Siek JG, Lee LQ, Lumsdaine A (2002) The boost graph library: user guide and reference manual. Addison-Wesley Longman Publishing Co., Inc. Boston

    Google Scholar 

  • Singh VK, Ghosh I (2006) Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets. Theor Biol Med Modelling 3(1):27

    Google Scholar 

  • Spagnuolo AM, Dirita V, Kirschner D (2011) A model for Vibrio cholerae colonization of the human intestine. J Theor Biol 289:247–258

    Google Scholar 

  • Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46(2):155–164

    Google Scholar 

  • Stoll G, Viara E, Barillot E, Calzone L (2012) Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm. BMC Syst Biol 6(1):116

    Google Scholar 

  • Strong M, Graeber TG, Beeby M, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (2003) Visualization and interpretation of protein networks in Mycobacterium tuberculosis based on hierarchical clustering of genomeâŁwide functional linkage maps. Nucleic Acids Res 31(24):7099–7109

    Google Scholar 

  • Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Suppl 1):D561–D568

    Google Scholar 

  • Trautmann L, Sekaly RP (2011) Solving vaccine mysteries: a systems biology perspective. Nat Immunol 12(8):729–731

    Google Scholar 

  • Tucker PA, Nowak E, Morth JP (2007) Two⣳component systems ofMycobacterium tuberculosis—structure⣳based approaches. Methods Enzymol 423:477–501

    Google Scholar 

  • Tyagi JS, Sharma D (2004) Signal transduction systems of mycobacteria with special reference to M. tuberculosis. Curr Sci 86(1):93–102

    Google Scholar 

  • Vashisht R, Mondal AK, Jain A, Shah A, Vishnoi P, Priyadarshini P, Bhattacharyya K, Rohira H, Bhat AG, Passi A et al (2012) Crowd sourcing a new paradigm for interactome driven drug target identification in Mycobacterium tuberculosis. PLoS One 7(7):e39808

    Google Scholar 

  • Vodovotz Y, Csete M, Bartels J, Chang S, An G (2008) Translational systems biology of inflammation. PLoS Comput Biol 4(4):e1000014

    Google Scholar 

  • Wang RS, Albert R (2011) Elementary signaling modes predict the essentiality of signal transduction network components. BMC Syst Biol 5(1):44

    Google Scholar 

  • Wang JH, Byun J, Pennathur S (2010a) Analytical approaches to metabolomics and applications to systems biology. Seminars Nephrol 30(5):500–511

    Google Scholar 

  • Wang Y, Cui T, Zhang C, Yang M, Huang Y, Li W, Zhang L, Gao C, He Y, Li Y (2010b) Global protein–protein interaction network in the human pathogen Mycobacterium tuberculosis H37Rv. J Proteome Res 9(12):6665–6677

    Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689

    Google Scholar 

  • Weston AD, Hood L (2004) Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J Proteome Res 3(2):179–196

    Google Scholar 

  • WHO (2012) Fact sheets: infectious diseases. World Health Organganization

    Google Scholar 

  • Winzeler EA (2005) Applied systems biology and malaria. Nat Rev Microbiol 4(2):145–151

    Google Scholar 

  • Wittmann DM, Krumsiek J, Saez-Rodriguez J, Lauffenburger DA, Klamt S, Theis FJ (2009) Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol 3(1):98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagasuma Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baloni, P., Ghosh, S., Chandra, N. (2015). Systems Approaches to Study Infectious Diseases. In: Singh, V., Dhar, P. (eds) Systems and Synthetic Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9514-2_8

Download citation

Publish with us

Policies and ethics