Skip to main content

Ocean Acidification and Related Indicators

  • Chapter
  • First Online:
Environmental Indicators

Abstract

Ocean acidification is one of the main consequences of global climate change. It is caused by the increasing input of atmospheric CO2 in the world ocean, which in turn is affecting the marine carbonate system and resulting by now in a measurable decline in seawater pH. Thus, several key water quality parameters (alkalinity, partial pressure of CO2, concentration of dissolved inorganic carbon – DIC, and the seawater pH) serve as environmental indicators for ocean acidification. In addition, many pelagic and benthic marine organisms, particularly those that are calcifying, negatively or positively respond to acidification so that their physiological parameters (calcification, photosynthesis, growth) may also act as indicators of this phenomenon. On the ecosystem level, potential environmental indicators for acidification can be found in the sedimentary record (mineralogy, crystallography), in the benthic community (relative abundance of calcifying versus non-calcifying organisms, rugosity), or in the overall production, cementation, and erosion of inorganic carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albright R (2011) Effects of ocean acidification on early life history stages of Caribbean Scleractinian corals. Univ Miami Sch Repos, dissertation, 156 pages. http://gradworks.umi.com/34/56/3456309.html

  • Albright R, Mason B, Langdon C (2008) Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs 27:485–490

    Google Scholar 

  • Albright R, Mason B, Miller MW, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Natl Acad Sci 107:20400

    CAS  Google Scholar 

  • Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Ann Rev Mar Sci 5:321–348

    Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove SG, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci U S A 105:17442–17446

    CAS  Google Scholar 

  • Arnold KE, Findlay HS, Spicer JI, Daniels CL, Boothroyd D (2009) Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.). Biogeosci 6:1747–1754

    CAS  Google Scholar 

  • Bates NR, Mathis JT (2009) The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosci 6:2433–2459

    CAS  Google Scholar 

  • Bibby R, Cleall-Harding P, Rundle S, Widdicombe S, Spicer J (2007) Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biol Lett 3:699–701

    Google Scholar 

  • Byrne M, Soars N, Selvakumaraswamy P, Dworjanyn SA, Davis AR (2010) Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Mar Environ Res 69:234–239

    CAS  Google Scholar 

  • Cai W-J, Hu X, Huang W-J, Murrell MC, Lehrter JC, Lohrenz SE, Chou W-C, Zhai W, Hollibaugh JT, Wang Y, Zhao P, Guo X, Gundersen K, Dai M, Gong G-C (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nat Geosci 4:1–5

    Google Scholar 

  • Catarino AI, Ridder C, Gonzalez M, Gallardo P, Dubois P (2011) Sea urchin Arbacia dufresnei (Blainville 1825) larvae response to ocean acidification. Polar Biol. doi:10.1007/s00300-011-1074-2

    Google Scholar 

  • Cerrano C, Cardini U, Bianchelli S, Corinaldesi C, Pusceddu A, Danovaro R (2013) Red coral extinction risk enhanced by ocean acidification. Sci Rep 3:1457. doi:10.1038/srep01457

    Google Scholar 

  • Coen LD (1988) Herbivory by crabs and the control of algal epibionts on Caribbean host corals. Oecologia 75:198–203

    Google Scholar 

  • Comeau S, Gattuso J-P, Nisumaa A-M, Orr J (2012) Impact of aragonite saturation state changes on migratory pteropods. Proc Biol Sci 279(1729):732–738. doi:10.1098/rspb.2011.0910

    Google Scholar 

  • Crawley A, Kline DI, Dunn S, Anthony KRN, Dove SG (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Glob Chang Biol 16:851–863

    Google Scholar 

  • Crim RN, Sunday JM, Harley CDG (2011) Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana). J Exp Mar Bio Ecol 400:272–277

    CAS  Google Scholar 

  • Crook ED, Potts D, Rebolledo-Vieyra M, Hernandez L, Paytan A (2011) Calcifying coral abundance near low-pH springs: implications for future ocean acidification. Coral Reefs 31:239–245

    Google Scholar 

  • Crook ED, Cohen AL, Rebolledo-Vieyra M, Hernandez L, Paytan A (2013) Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc Natl Acad Sci U S A 110:11044–11049

    CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements, PICES special publication, 3. North Pacific Marine Science Organization, Sidney, 176 pp

    Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192

    Google Scholar 

  • Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci U S A 106:12235–12240

    CAS  Google Scholar 

  • Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby PJ (2012) Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol Lett 15(4):338–346

    Google Scholar 

  • Drew E (1983) Halimeda biomass, growth rates and sediment generation on reefs in the central Great Barrier Reef Province. Coral Reefs 2(2):101–110

    Google Scholar 

  • Dupont S, Lundve B, Thorndyke MC (2010) Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J Exp Zoolog Part B Mol Dev Evol 314:382–389

    Google Scholar 

  • Egleston ES, Sabine CL, Morel FMM (2010) Revelle revisited: buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob Biogeochem Cycles 24(1): GB1002. doi:10.1029/2008GB003407

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169

    CAS  Google Scholar 

  • Fabry VJ (2009) Ocean acidification at high latitudes: the bellwether. Oceanography 22:160–171

    Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    CAS  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas JA, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    CAS  Google Scholar 

  • Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492

    CAS  Google Scholar 

  • Fernández-Reiriz J, Range P, Álvarez-Salgado X, Labarta U (2011) Physiological energetics of juvenile clams (Ruditapes decussatus) in a high CO2 coastal ocean. Mar Ecol Prog Ser 433:97–105

    Google Scholar 

  • Friedrich T, Timmermann A, Abe-Ouchi A, Bates NR, Chikamoto MO, Church MJ, Dore JE, Gledhill DK, González-Dávila M, Heinemann M, Ilyina T, Jungclaus JH, McLeod E, Mouchet A, Santana-Casiano JM (2012) Detecting regional anthropogenic trends in ocean acidification against natural variability. Nat Clim Change 2:167–171

    CAS  Google Scholar 

  • Garrard SL, Hunter RC, Frommel AY, Lane AC et al (2013) Biological impacts of ocean acidification: a postgraduate perspective on research priorities. Mar Biol 160:1789–1805

    CAS  Google Scholar 

  • Gattuso J, Hansson L (2011) Ocean acidification. Oxford University Press, Oxford/New York

    Google Scholar 

  • Gazeau F, Gattuso J-P, Dawber C, Pronker AE et al (2010) Effect of ocean acidification on the early life stages of the blue mussel (Mytilus edulis). Biogeosci Discuss 7:2927–2947

    Google Scholar 

  • Gazeau F, Gattuso J-P, Greaves M, Elderfield H et al (2011) Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas). PLoS One 6:e23010

    CAS  Google Scholar 

  • Gooding RA, Harley CDG, Tang E (2009) Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proc Natl Acad Sci U S A 106:9316–9321

    CAS  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E et al (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99

    CAS  Google Scholar 

  • Havenhand J, Schlegel P (2009) Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosci Discuss 6:4573–4586

    Google Scholar 

  • Havenhand J, Buttler F, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18:R651–R652

    CAS  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    CAS  Google Scholar 

  • Hofmann M, Schellnhuber H-J (2009) Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. Proc Natl Acad Sci U S A 106:3017–3022

    CAS  Google Scholar 

  • Hönisch B, Ridgwell A, Schmidt DN, Thomas E et al (2012) The geological record of ocean acidification. Science 335:1058–1063

    Google Scholar 

  • Hoppe CJM, Langer G, Rost B (2011) Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulations. J Exp Mar Biol Ecol 406:54–62

    Google Scholar 

  • Howarth R, Chan F, Conley DJ, Garnier J et al (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9:18–26

    Google Scholar 

  • Jantzen C, Häussermann V, Försterra G, Laudien J et al (2013) Occurrence of a cold-water coral along natural pH gradients (Patagonia, Chile). Mar Biol 160(10):2597–2607

    CAS  Google Scholar 

  • Jinendradasa S, Ekaratne S (2002) Composition and monthly variation of fauna inhabiting reef-associated Halimeda. Proc Ninth Int Coral Reef Symp 2(October):1059–1063

    Google Scholar 

  • Johnson VR, Russell BD, Fabricius KE, Brownlee C et al (2012) Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO 2 gradients. Glob Chang Biol 18:2792–2803

    Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ et al (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Google Scholar 

  • Kimura R, Takami H, Ono T, Onitsuka T et al (2011) Effects of elevated pCO2 on the early development of the commercially important gastropod, Ezo abalone Haliotis discus hannai. Fish Oceanogr 20(5):357–366

    Google Scholar 

  • Kleypas J, Anthony KRN, Gattuso J-P (2011) Coral reefs modify their seawater carbon chemistry–case study from a barrier reef (Moorea, French Polynesia). Glob Chang Biol 17:3667–3678

    Google Scholar 

  • Krief S, Hendy EJ, Fine M, Yam R et al (2010) Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim Cosmochim Acta 74:4988–5001

    CAS  Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS et al (2007) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117

    Google Scholar 

  • Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4:225–233

    Google Scholar 

  • Langdon C (2003) Effect of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeochem Cycles 17(1):1011. doi:10.1029/2002GB001941

    Google Scholar 

  • Langer G, Geisen M, Baumann K-H, Kläs J et al (2006) Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem Geophys Geosyst 7(9):1–12. doi:10.1029/2005GC001227

    Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Google Scholar 

  • Leclercq N, Gattuso J-P, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564

    CAS  Google Scholar 

  • Lloret J, Marín A, Marín-Guirao L (2008) Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuar Coast Shelf Sci 78:403–412

    Google Scholar 

  • Lohbeck KT, Riebesell U, Reusch TBH (2012) Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci 5:346–351

    CAS  Google Scholar 

  • Maier C, Watremez P, Taviani M, Weinbauer MG, Gattuso J-P (2012) Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc Biol Sci 279:1716–1723

    CAS  Google Scholar 

  • Manzello D, Kleypas J (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci U S A 105:10450–10455

    CAS  Google Scholar 

  • Martin S, Gattuso J-P (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol 15:2089–2100

    Google Scholar 

  • Marubini F, Ferrier-Pagès C, Cuif J-PP, Ferrier-Pages C (2003) Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proc Biol Sci 270:179–184

    Google Scholar 

  • Marubini F, Ferrier-Pagès C, Furla P, Allemand D (2008) Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs 27:491–499

    Google Scholar 

  • Meron D, Atias E, Iasur Kruh L, Elifantz H et al (2011) The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J 5:51–60

    Google Scholar 

  • Miles H, Widdicombe S, Spicer JI, Hall-Spencer J (2007) Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Mar Pollut Bull 54:89–96

    CAS  Google Scholar 

  • Millero FJ, Pierrot D, Lee K, Wanninkhof R et al (2002) Dissociation constants for carbonic acid determined from field measurements. Deep Sea Res Part I Oceanogr Res Pap 49:1705–1723

    CAS  Google Scholar 

  • Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233

    Google Scholar 

  • Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am J Sci 283:780–799

    CAS  Google Scholar 

  • Muzuka ANN, Kangwe JM, Nyandwi N, Wannäs K et al (2001) Preliminary results on the sediment sources, grain size distribution and percentage cover of sand-producing Halimeda species and associated flora in Chwaka Bay. In: Richmond MD, Francis J (eds) Marine science development in Tanzania and Eastern Africa. Proceedings of the 20th anniversary conference on advances in Marine Science in Tanzania. 28 June–1 July 1999, IMS/WIOMSA, Zanzibar, pp 51–59

    Google Scholar 

  • Nakamura M, Ohki S, Suzuki A, Sakai K (2011) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS One 6:e14521

    CAS  Google Scholar 

  • O’Donnell MJ, Hammond LM, Hofmann GE (2008) Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae. Mar Biol 156:439–446

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    CAS  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA, Borysko L et al (2011) Adult exposure influences offspring response to ocean acidification in oysters. Glob Chang Biol 18(1):82–92. doi:10.1111/j.1365-2486.2011.02520.x

    Google Scholar 

  • Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Biol Ecol 400:278–287

    CAS  Google Scholar 

  • Price N, Hamilton S, Tootell J, Smith J (2011) Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar Ecol Prog Ser 440:67–78

    CAS  Google Scholar 

  • Raven JA, Caldeira K, Elderfield H, Hoegh-Guldberg O et al (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society, Cardiff, p 60

    Google Scholar 

  • Reyes-Nivia C, Diaz-Pulido G, Kline DI, Guldberg O-H, Dove S (2013) Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Glob Chang Biol 19:1919–1929. doi:10.1111/gcb.12158

    Google Scholar 

  • Ridgwell A, Schmidt DN (2010) Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nat Geosci 3:196–200

    CAS  Google Scholar 

  • Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–548

    CAS  Google Scholar 

  • Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, 260 p

    Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geologija 37:1131–1134

    CAS  Google Scholar 

  • Robbins LL, Knorr PO, Hallock P (2009) Response of Halimeda to ocean acidification: field and laboratory evidence. Biogeosci Discuss 6:4895–4918

    Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    CAS  Google Scholar 

  • Schiermeier Q (2011) Environment: earth’s acid test. Nature 471:154–156. doi:10.1038/471154a

    CAS  Google Scholar 

  • Schram JB, McClintock JB, Angus RA, Lawrence JM (2011) Regenerative capacity and biochemical composition of the sea star Luidia clathrata (Say) (Echinodermata: Asteroidea) under conditions of near-future ocean acidification. J Exp Mar Biol Ecol 407(2):266–274

    CAS  Google Scholar 

  • Semesi IS, Kangwe J, Björk M (2009) Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta). Estuar Coast Shelf Sci 84:337–341

    CAS  Google Scholar 

  • Shaw EC, McNeil BI, Tilbrook B, Matear R, Bates ML (2013) Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO 2 conditions. Glob Chang Biol 19(5):1632–1641. doi:10.1111/gcb.12154

    Google Scholar 

  • Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science 327:676–679

    CAS  Google Scholar 

  • Sluijs A, Schouten S, Pagani M, Woltering M et al (2006) Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441:610–613

    CAS  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z et al (eds) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Spicer JI, Raffo A, Widdicombe S (2006) Influence of CO2-related seawater acidification on extracellular acid–base balance in the velvet swimming crab Necora puber. Mar Biol 151:1117–1125

    Google Scholar 

  • Stachowicz JJ, Hay ME (1996) Facultative mutualism between an herbivorous crab and a coralline alga: advantages of eating noxious seaweeds. Oecologia 105:377–387

    Google Scholar 

  • Stachowicz JJ, Hay ME (1999) Reduced mobility is associated with compensatory feeding and increased diet breadth of marine crabs. Mar Ecol Prog Ser 188:169–178

    Google Scholar 

  • Steinacher M, Joos F, Frolicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosci 6:515–533

    CAS  Google Scholar 

  • Stumpp M, Trübenbach K, Brennecke D, Hu MY, Melzner F (2012) Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aquat Toxicol 110–111:194–207

    Google Scholar 

  • Sunda WG, Cai W-J (2012) Eutrophication induced CO2-acidification of subsurface coastal waters: interactive effects of temperature, salinity, and atmospheric PCO2. Environ Sci Technol 46:10651–10659

    CAS  Google Scholar 

  • Suwa R, Nakamura M, Morita M, Shimada K, Iguchi A, Sakai K, Suzuki A (2009) Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora). Fish Sci 76:93–99

    Google Scholar 

  • Tans P, Keeling R (2014) Trends in atmospheric carbon dioxide. National Oceanic and Atmospheric Administration Earth System Research Laboratory Global Monitoring Division; Scripps Institution of Oceanography. http://www.esrl.noaa.gov/gmd/ccgg/trends/.Accessed 25 Feb 2014

  • Tortell PD, Payne CD, Li Y, Trimborn S et al (2008) CO 2 sensitivity of Southern Ocean phytoplankton. Geophys Res Lett 35:L04605

    Google Scholar 

  • Uthicke S, Momigliano P, Fabricius KE (2013) High risk of extinction of benthic foraminifera in this century due to ocean acidification. Sci Rep 3:1769. doi:10.1038/srep01769

    Google Scholar 

  • Venn A, Tambutte E, Holcomb M, Allemand D, Tambutte S (2011) Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS One 6:e20013

    CAS  Google Scholar 

  • Vizzini S, Tomasello A, Di Maida G, Pirrotta M et al (2010) Effect of explosive shallow hydrothermal vents on δ13C and growth performance in the seagrass Posidonia oceanica. J Ecol 98:1284–1291

    Google Scholar 

  • Voss M, Bange HW, Dippner JW, Middelburg JJ et al (2013) The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philos Trans R Soc Lond B Biol Sci 368:20130121

    Google Scholar 

  • Walther K, Sartoris FJ, Bock C, Pörtner HO (2009) Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus. Biogeosci Discuss 6:2837–2861

    Google Scholar 

  • Walther K, Anger K, Pörtner HO (2010) Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Mar Ecol Prog Ser 417:159–170

    Google Scholar 

  • Walther K, Sartoris FJ, Pörtner HO (2011) Impacts of temperature and acidification on larval calcium incorporation of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Mar Biol 158(9):2043–2053

    CAS  Google Scholar 

  • Wild C, Hoegh-Guldberg O, Naumann MSS (2011) Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar Freshw 62:205–215

    CAS  Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS One 7:e45124

    CAS  Google Scholar 

  • Witt V, Wild C, Anthony KRN, Diaz-Pulido G, Uthicke S (2011) Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reef. Environ Microbiol 3(11):2976–2989

    Google Scholar 

  • Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci U S A 105:18848–18853

    CAS  Google Scholar 

  • Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S et al (2009) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326:1098–1100

    CAS  Google Scholar 

  • Zachos JC, Wara MW, Bohaty S, Delaney ML et al (2003) A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science 302:1551–1554

    CAS  Google Scholar 

  • Zachos JC, Röhl U, Schellenberg SA, Sluijs A et al (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1611–1615

    CAS  Google Scholar 

  • Zeebe RE, Zachos JC, Dickens GR (2009) Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nat Geosci 2:576–580

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich W. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meyer, F.W., Cardini, U., Wild, C. (2015). Ocean Acidification and Related Indicators. In: Armon, R., Hänninen, O. (eds) Environmental Indicators. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9499-2_41

Download citation

Publish with us

Policies and ethics