Skip to main content

Introduction to Fixed and Flapping Wing Aerodynamics

  • Chapter
  • First Online:
The DelFly

Abstract

In this chapter, physical principles of fixed-wing and flapping-wing aerodynamics are introduced briefly with the associated terminology. Furthermore, the main aerodynamic mechanisms which are responsible for the generation of the forces in the flapping-wing flight are described in order to provide the reader with fundamental knowledge before further comprehensive analysis of the DelFly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I.H. Abbott, A.E. Von Doenhoff, Theory of Wing Sections, Including a Summary of Airfoil Data, Dover Books on Aeronautical Engineering Series (Dover Publications, New York, 1959)

    Google Scholar 

  2. O. Baskan, Experimental and numerical investigation of flow field around flapping airfoils making figure-of-eight in hover. Master’s thesis, Middle East Technical University, 2009

    Google Scholar 

  3. J.J. Bertin, M.L. Smith, Aerodynamics for Engineers (Prentice Hall, New Jersey, 1998)

    Google Scholar 

  4. J.M. Birch, M.H. Dickinson, Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412(6848), 729–733 (2001)

    Article  Google Scholar 

  5. J.M. Birch, M.H. Dickinson, The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. J. Exp. Biol. 206(13), 2257–2272 (2003)

    Article  Google Scholar 

  6. R.J. Bomphrey, N.J. Lawson, G.K. Taylor, A.L.R. Thomas, Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth. Exp. Fluids 40(4), 546–554 (2006)

    Article  Google Scholar 

  7. R.J. Bomphrey, N.J. Lawson, N.J. Harding, G.K. Taylor, A.L.R. Thomas, The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. J. Exp. Biol. 208(Pt 6), 1079–1094 (2005)

    Article  Google Scholar 

  8. R.J. Bomphrey, G.K. Taylor, A.L.R. Thomas, Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair. Exp. Fluids 46(5), 811–821 (2009)

    Article  Google Scholar 

  9. J.F. Campbell, Augmentation of vortex lift by spanwise blowing. J. Aircr. 13(9), 727–732 (1976)

    Article  Google Scholar 

  10. T.L. Daniel, S.A. Combes, Flexible wings and fins: bending by inertial or fluid-dynamic forces? Integr. Comp. Biol. 42(5), 1044–1049 (2002)

    Article  Google Scholar 

  11. R. Demoll, Zuschriften an die Herausgeber. Der Flug der Insekten und der Vgel. Die Naturwiss. 27, 480–482 (1919)

    Article  Google Scholar 

  12. M.W. Denny, American Society of Zoologists Meeting. Air and water: the biology and physics of life’s media (Princeton University Press, New Jersey, 1993)

    Google Scholar 

  13. M.H. Dickinson, K.G. Götz, Unsteady aerodynamic performance of model wings at low reynolds numbers. J. Exp. Biol. 174, 45–64 (1993)

    Google Scholar 

  14. M.H. Dickinson, F.-O. Lehmann, S.P. Sane, Wing rotation and the aerodynamic basis of insect flight. Science 284(5422), 1954–1960 (1999)

    Article  Google Scholar 

  15. M.H. Dickinson, F.-O. Lehmann, K.G. Gotz, The active control of wing rotation by drosophila. J. Exp. Biol. 182(1), 173–189 (1993)

    Google Scholar 

  16. C.P. Ellington, The aerodynamics of hovering insect flight. II: morphological parameters. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1934–1990(305), 17–40 (1984)

    Google Scholar 

  17. C.P. Ellington, The aerodynamics of hovering insect flight. III: kinematics. Philos. Trans. R. Soc. B Biol. Sci. 305(1122), 41–78 (1984)

    Google Scholar 

  18. C.P. Ellington, The aerodynamics of hovering insect flight. IV: aeorodynamic mechanisms. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. (1934-1990) 305(1122), 79–113 (1984)

    Google Scholar 

  19. C.P. Ellington, The aerodynamics of hovering insect flight. V: a vortex theory. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. (1934-1990) 305(1122), 115–144 (1984)

    Google Scholar 

  20. C.P. Ellington, C. van den Berg, A.P. Willmott, A.L.R. Thomas, Leading-edge vortices in insect flight. Nature 384(19/26), 626–630 (1996)

    Article  Google Scholar 

  21. A.R. Ennos, The inertial cause of wing rotation in diptera. J. Exp. Biol. 140(1), 161–169 (1988)

    Google Scholar 

  22. W.S. Farren, The reaction on a wing whose angle of incidence is changing rapidly. Rep. Mem. Aeronaut. Res. Comm. (Great Britain 1648, Aeronautical Research Committee, Great Britain, 1935)

    Google Scholar 

  23. Y. Fung, An Introduction to the Theory of Aeroelasticity (Dover Publications, New York, 1993)

    Google Scholar 

  24. I.E. Garrick, Propulsion of a flapping and oscillating airfoil. NACA: Report 567, National Advisory Committee for Aeronautics, Unites States (1937)

    Google Scholar 

  25. H. Glauert, The force and moment on an oscillating aerofoil. Rep. Mem. Aeronaut. Res. Comm. (Great Britain) 1561 (Aeronautical Research Committee, Great Britain, 1929)

    Google Scholar 

  26. K.O. Granlund, M.V. Ol, L.P. Bernal, Unsteady pitching flat plates. J. Fluid Mech. 733, R5 (2013)

    Article  MATH  Google Scholar 

  27. R.G. Grant, Flight: The Complete History (DK Publishing, London, 2007)

    Google Scholar 

  28. Ăœ. GĂ¼lçat, Fundamentals of Modern Unsteady Aerodynamics (Springer, Berlin, 2010)

    MATH  Google Scholar 

  29. R. Halfman, Experimental aerodynamic derivatives of a sinusoidally oscillating airfoil in two-dimensional flow. NACA: Technical Note 2465, National Advisory Committee for Aeronautics, Unites States (1951)

    Google Scholar 

  30. D.G. Hurley, The use of boundary-layer control to establish free stream-line flows. Adv. Aeronaut. Sci. 2, 662–708 (1959)

    Article  Google Scholar 

  31. T. Jardin, A. Farcy, L. David, Three-dimensional effects in hovering flapping flight. J. Fluid Mech. 702, 102–125 (2012)

    Article  MATH  Google Scholar 

  32. J.D. Anderson Jr, Fundamentals of Aerodynamics (McGraw-Hill, New York, 2001)

    Google Scholar 

  33. J. Katz, A. Plotkin, Low Speed Aerodynamics: From Wing Theory to Pane Methods (McGraw-Hill, New York, 1991)

    Google Scholar 

  34. V.M. Kramer, Die zunahme des maximalauftriebes von tragflugeln bei plotzlicher anstellwinkelvergrosserung (boeneffekt). Z. Flugtech Motorluftschiff 23, 185–189 (1932)

    Google Scholar 

  35. P.K. Kundu, I.M. Cohen, Fluid Mechanics, 4th edn. (Elsevier, New York, 2008)

    Google Scholar 

  36. F.-O. Lehmann, The mechanisms of lift enhancement in insect flight. Naturwissenschaften 91(3), 101–122 (2004)

    Article  MathSciNet  Google Scholar 

  37. F.-O. Lehmann, P. Simon, The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings. J. Exp. Biol. 210(Pt 8), 1362–1377 (2007)

    Article  Google Scholar 

  38. F.-O. Lehmann, S.P. Sane, M.H. Dickinson, The aerodynamic effects of wing-wing interaction in flapping insect wings. J. Exp. Biol. 208(Pt 16), 3075–92 (2005)

    Google Scholar 

  39. D. Lentink, M.H. Dickinson, Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Exp. Biol. 212(Pt 16), 2705–2719 (2009)

    Article  Google Scholar 

  40. J.H. Marden, Maximum lift production during takeoff in flying animals. J. Exp. Biol. 130, 235–238 (1987)

    Google Scholar 

  41. L.A. Miller, C.S. Peskin, Flexible clap and fling in tiny insect flight. J. Exp. Biol. 212(19), 3076–3090 (2009)

    Article  Google Scholar 

  42. F.T. Muijres, L.C. Johansson, R. Barfield, M. Wolf, G.R. Spedding, A. Hedenström, Leading-edge vortex improves lift in slow-flying bats. Science 319(5867), 1250–1253 (2008)

    Article  Google Scholar 

  43. M.M. Munk, Note on the Air Forces on a Wing Caused by Pitching. NACA: Technical note 191, National Advisory Committee for Aeronautics, Unites States, 1925

    Google Scholar 

  44. M.F.M. Osborne, Aerodynamics of flapping flight with application to insects. J. Exp. Biol. 28(2), 221–245 (1951)

    Google Scholar 

  45. M. Percin, Flow around a plunging airfoil in a uniform flow. Master’s thesis, Istanbul Technical University, 2009

    Google Scholar 

  46. M. Percin, B.W. van Oudheusden, Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates. Exp. Fluids 56(2), 1–19 (2015)

    Google Scholar 

  47. C. Edward, Predictions of vortex-lift characteristics by a leading-edge suction analogy. J. Aircr. 8(4), 193–199 (1971)

    Article  Google Scholar 

  48. E. Reid, Airfoil Lift with Changing Angle of Attack (Technical note, National Advisory Committee for Aeronautics, Unites States, Naca, 1927)

    Google Scholar 

  49. S.P. Sane, M.H. Dickinson, The control of flight force by a flapping wing: lift and drag production. J. Exp. Biol. 204(Pt 15), 2607–2626 (2001)

    Google Scholar 

  50. S.P. Sane, M.H. Dickinson, The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol. 205(Pt 8), 1087–1096 (2002)

    Google Scholar 

  51. S.P. Sane, Review: the aerodynamics of insect flight. J. Exp. Biol. 206(23), 4191–4208 (2003)

    Article  Google Scholar 

  52. L.I. Sedov, Two-dimensional Problems in Hydrodynamics and Aerodynamics (Interscience Publishers, New York, 1965)

    Google Scholar 

  53. W. Shyy, Y. Lian, J. Tang, D. Viieru, H. Liu, Aerodynamics of Low Reynolds Number Flyers (Cambridge University Press, Cambridge Aerospace Series, Cambridge, 2007)

    Google Scholar 

  54. W. Shyy, H. Aono, S.K. Chimakurthi, P. Trizila, C.-K. Kang, C.E.S. Cesnik, H. Liu, Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46(7), 284–327 (2010)

    Google Scholar 

  55. A. Silverstein, U. Joyner, Experimental verification of the theory of oscillating airfoils. NACA: Report 673, National Advisory Committee for Aeronautics, Unites States, 1939

    Google Scholar 

  56. R.B. Srygley, A.L.R. Thomas, Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420(6916), 660–664 (2002)

    Article  Google Scholar 

  57. G. Taylor, M.S. Triantafyllou, C. Tropea, Animal Locomotion (Springer e-Books, Springer, SpringerLink, Berlin, 2010)

    Book  Google Scholar 

  58. T. Theodorsen, General theory of aerodynamic instability and the mechanism of flutter. NACA: Report 496, National Advisory Committee for Aeronautics, Unites States, 1935

    Google Scholar 

  59. Q.T. Truong, Q.V. Nguyen, V.T. Truong, H.C. Park, D.Y. Byun, N.S. Goo, A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system. Bioinspiration Biomimetics 6(3), 036008 (2011)

    Google Scholar 

  60. Z.J. Wang, Dissecting insect flight. Annu. Rev. Fluid Mech. 37(1), 183–210 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. T. Weis-Fogh, Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59, 169–230 (1973)

    Google Scholar 

  62. J.Z. Wu, A.D. Vakili, J.M. Wu, Review of the physics of enhancing vortex lift by unsteady excitation. Prog. Aerosp. Sci. 28(2), 73–131 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. H. E. de Croon .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Bussiness Media Dordrecht

About this chapter

Cite this chapter

de Croon, G.C.H.E., Perçin, M., Remes , B.D.W., Ruijsink, R., De Wagter, C. (2016). Introduction to Fixed and Flapping Wing Aerodynamics. In: The DelFly. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9208-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9208-0_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9207-3

  • Online ISBN: 978-94-017-9208-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics