Skip to main content

Chlamydial MACPF Protein CT153

  • Chapter
  • First Online:
MACPF/CDC Proteins - Agents of Defence, Attack and Invasion

Part of the book series: Subcellular Biochemistry ((SCBI,volume 80))

Abstract

Chlamydiae are obligate intracellular bacterial parasites that infect a wide range of metazoan hosts. Some Chlamydia species are important causes of chronic inflammatory diseases of the ocular, genital and respiratory tracts in humans. Genes located in a variable region of chlamydial genomes termed the plasticity zone are known to be key determinants of pathogenic diversity. The plasticity zone protein CT153, present only in select species, contains a membrane attack complex/perforin (MACPF) domain, which may mediate chlamydial interactions with the host cell. CT153 is present throughout the C. trachomatis developmental cycle and is processed into polypeptides that interact with membranes differently than does the parent protein. Chlamydiae interact extensively with membranes from the time of invasion until they eventually exit host cells, so numerous roles for a MACPF protein in pathogenesis of these pathogens are conceivable. Here, we present an overview of what is known about CT153 and highlight potential roles of a MACPF family protein in a group of pathogens whose intracellular development is marked by a series of interactions with host cell membranes and organelles. Finally, we identify new strategies for identifying CT153 functions made feasible by the recent development of a basic toolset for genetic manipulation of chlamydiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CDC:

Cholesterol dependent cytolysins

EB:

Elementary body

LGV:

Lymphogranuloma venereum

MACPF:

Membrane attack complex/perforin

MIR:

Mannosyltransferase, inositol 1,4,5-triphosphate receptor, ryanodine receptor

PLD:

Phospholipase D

RB:

Reticulate body

TgPLP1:

Toxoplasma gondii PLP1

References

  1. Anderluh G, Lakey JH (2008) Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 33:482–490

    Article  CAS  PubMed  Google Scholar 

  2. Azuma Y, Hirakawa H, Yamashita A, Cai Y, Rahman MA, Suzuki H, Mitaku S, Toh H, Goto S, Murakami T, Sugi K, Hayashi H, Fukushi H, Hattori M, Kuhara S, Shirai M (2006) Genome sequence of the cat pathogen, Chlamydophila felis. DNA Res 13:15–23

    Article  CAS  PubMed  Google Scholar 

  3. Beatty WL (2006) Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J Cell Sci 119:350–359

    Article  CAS  PubMed  Google Scholar 

  4. Beatty WL, Morrison RP, Byrne GI (1994) Immunoelecton microscopic quantitation of differential levels of chlamydial proteins in a cell culture model of persistent Chlamydia trachomatis infection. Infect Immun 62:4059–4062

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Beatty WL, Morrison RP, Byrne GI (1995) Reactivation of persistent Chlamydia trachomatis infection in cell culture. Infect Immun 63:199–205

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Belland RJ, Scidmore MA, Crane DD, Hogan DM, Whitmire W, McClarty G, Caldwell HD (2001) Chlamydia trachomatis cytotoxicity associated with complete and partial cytotoxin genes. Proc Natl Acad Sci USA 98:13984–13989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Belland RJ, Zhong G, Crane DD, Hogan D, Sturdevant D, Sharma J, Beatty WL, Caldwell HD (2003) Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA 100:8478–8483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Blyth WA, Taverne J (1972) Some consequences of the multiple infection of cell cultures by TRIC organisms. J Hyg 70:33–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Caldwell HD, Wood H, Crane D, Bailey R, Jones RB, Mabey D, Maclean I, Mohammed Z, Peeling R, Roshick C, Schachter J, Solomon AW, Stamm WE, Suchland RJ, Taylor L, West SK, Quinn TC, Belland RJ, McClarty G (2003) Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J Clin Invest 111:1757–1769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Carabeo RA, Mead DJ, Hackstadt T (2003) Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci USA 100:6771–6776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Carlson JH, Hughes S, Hogan D, Cieplak G, Sturdevant DE, McClarty G, Caldwell HD, Belland RJ (2004) Polymorphisms in the Chlamydia trachomatis cytotoxin locus associated with ocular and genital isolates. Infect Immun 72:7063–7072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Carlson JH, Porcella SF, McClarty G, Caldwell HD (2005) Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains. Infect Immun 73:6407–6418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chin E, Kirker K, Zuck M, James G, Hybiske K (2012) Actin recruitment to the Chlamydia inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial factors. PLoS One 7:e46949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Clifton DR, Fields KA, Grieshaber NA, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T (2004) A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci USA 101:10166–10171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cocchiaro JL, Kumar Y, Fischer ER, Hackstadt T, Valdivia RH (2008) Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci USA 105:9379–9384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Corsaro D, Greub G (2006) Pathogenic potential of novel Chlamydiae and diagnostic approaches to infections due to these obligate intracellular bacteria. Clin Microbiol Rev 19:283–297

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Cossart P, Vicente MF, Mengaud J, Baquero F, Perez-Diaz JC, Berche P (1989) Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect Immun 57:3629–3636

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Delevove C, Nilges M, Dautry-Varsat A, Subtil A (2004) Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes. J Biol Chem 279:46896–46906

    Article  Google Scholar 

  19. DeMars R, Weinfurter J (2008) Interstrain gene transfer in Chlamydia trachomatis in vitro: mechanism and significance. J Bacteriol 190:1605–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Geoffroy C, Gaillard JL, Alouf JE, Berche P (1987) Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect Immun 55:1641–1646

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Geiffers J, Durling L, Ouellette SP, Rupp J. Maass M, Byrne GI, Caldwell HD, Belland RJ (2003) Genotypic differences in the Chlamydia pneumonia tyrP locus related to vascular tropism and pathogenicity. J Infect Dis 188:1085–1093

    Google Scholar 

  22. Gilbert RJ, Mikelj M, Dalla Serra M, Froelich CJ, Anderluh G (2013) Effects of MACPF/CDC proteins on lipid membranes. Cell Mol Life Sci 70:2083–2098

    Article  CAS  PubMed  Google Scholar 

  23. Grieshaber SS, Grieshaber NA, Hackstadt T (2003) Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process. J Cell Sci 116:3793–3802

    Article  CAS  PubMed  Google Scholar 

  24. Hackstadt T, Rockey DD, Heinzen RA, Scidmore MA (1996) Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15:964–977

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Hadders MA, Beringer DX, Gros P (2007) Structure of C8 alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317:1552–1554

    Article  CAS  PubMed  Google Scholar 

  26. Hadding U, Muller-Eberhard HJ (1969) The ninth component of human complement: isolation, description and mode of action. Immunology 16:719–735

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hatch GM, McClarty G (1998) Phospholipid composition of purified Chlamydia trachomatis mimics that of the eukaryotic host cell. Infect Immun 66:3727–3735

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Heinzen RA, Scidmore MA, Rockey DD, Hackstadt T (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles for Coxiella burnetti and Chlamydia trachomatis. Infect Immun 64:796–809

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Heuer D, Lipinski AR, Machuy N, Karlas A, Wehrens A, Siedler F, Brinkmann V, Meyer TF (2009) Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457:731–735

    Article  CAS  PubMed  Google Scholar 

  30. Hybiske K, Stephens RS (2007) Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci USA 104:11430–11435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hybiske K, Stephens RS (2008) Exit strategies of intracellular pathogens. Nat Rev Microbiol 6:99–110

    Article  CAS  PubMed  Google Scholar 

  32. Ishino T, Chinzei Y, Yuda M (2005) A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell Microbiol 7:199–208

    Article  CAS  PubMed  Google Scholar 

  33. Kadota K, Ishino T, Matsuyama T, Chinzei Y, Yuda M (2004) Essential role of membrane-attack protein in malarial transmission to mosquito host. Proc Natl Acad Sci USA 101:16310–16315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kafsack BF, Carruthers VB (2010) Apicomplexan perforin-like proteins. Commun Integr Biol 3:18–23

    Article  PubMed Central  PubMed  Google Scholar 

  35. Kafsack BF, Pena JD, Coppens I, Ravindran S, Boothroyd JC, Carruthers VB (2009) Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 323:530–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS (1999) Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21:385–389

    Article  CAS  PubMed  Google Scholar 

  37. Kari L, Goheen MM, Randall LB, Taylor LD, Carlson JH, Whitmire WM, Virok D, Rajaram K, Endresz V, McClarty G, Nelson DE, Caldwell HD (2011) Generation of targeted Chlamydia trachomatis null mutants. Proc Natl Acad Sci USA 108:7189–7193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kumar Y, Cocchiaro J, Valdivia RH (2006) The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr Biol 16:1646–1651

    Article  CAS  PubMed  Google Scholar 

  39. Liu X, Afrane M, Clemmer DE, Zhong G, Nelson DE (2010) Identification of Chlamydia trachomatis outer membrane complex proteins by differential proteomics. J Bacteriol 192:2852–2860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Madden JC, Ruiz N, Caparon M (2001) Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in Gram-positive bacteria. Cell 104:143–152

    Article  CAS  PubMed  Google Scholar 

  41. McClarty G (1999) Chlamydial metabolism as inferred from the complete genome sequence. In: Stephens RS (ed) Chlamydia: intracellular biology, pathogenesis, and immunity. ASM Press, Washington

    Google Scholar 

  42. McClarty G, Caldwell HD, Nelson DE (2007) Chlamydial interferon gamma immune evasion influences infection tropism. Curr Opin Microbiol 10:47–51

    Article  CAS  PubMed  Google Scholar 

  43. Metkar SS, Wang B, Aguilar-Santelises M, Raja SM, Uhlin-Hansen L, Podack E, Trapani JA, Froelich CJ (2002) Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B-seglycin complexes into target cells without plasma membrane pore formation. Immunity 16:417–428

    Article  CAS  PubMed  Google Scholar 

  44. Moulder JW (1991) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55:143–190

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Nelson DE, Crane DD, Taylor LD, Dorward DW, Goheen MM, Caldwell HD (2006) Inhibition of chlamydiae by primary alcohols correlates with the strain-specific complement of plasticity zone phospholipase D genes. Infect Immun 74:73–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Nelson DE, Taylor LD, Shannon JG, Whitmire WM, Crane DD, McClarty G, Su H, Kari L, Caldwell HD (2007) Phenotypic rescue of Chlamydia trachomatis growth in IFN-gamma treated mouse cells by irradiated Chlamydia muridarum. Cell Microbiol 9:2289–2298

    Article  CAS  PubMed  Google Scholar 

  47. Nelson DE, Virok DP, Wood H, Roshick C, Johnson RM, Whitmire WM, Crane DD, Steele-Mortimer O, Kari L, McClarty G, Caldwell HD (2005) Chlamydial IFN-gamma immune evasion is linked to host infection tropism. Proc Natl Acad Sci USA 102:10658–10663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Nelson DE (2012) The Chlamydial cell envelope. In: Tan M, Bavoil P (eds) Intracellular pathogens I: chlamydiales. ASM Press, Washington

    Google Scholar 

  49. Peitsch MC, Amiguet P, Guy R, Brunner J, Maizel JV Jr, Tschopp J (1990) Localization and molecular modeling of the membrane-inserted domain of the ninth component of human complement and perforin. Mol Immunol 27:589–602

    Article  CAS  PubMed  Google Scholar 

  50. Ponting CP (1999) Chlamydial homologues of the MACPF (MAC/perforin) domain. Curr Biol 9:R911–R913

    Article  CAS  PubMed  Google Scholar 

  51. Ponting CP (2000) Novel repeats in ryanodine and IP3 receptors and protein O-mannosyltransferases. Trends Biochem Sci 25:48–50

    CAS  PubMed  Google Scholar 

  52. Ponting CP, Kerr ID (1996) A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues. Protein Sci 5:914–922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Praper T, Sonnen AF, Kladnik A, Andrighetti AO, Viero G, Morris KJ, Volpi E, Lunelli L, Dalla Serra M, Froelich CJ, Gilbert RJ, Anderluh G (2011) Perforin activity at membranes leads to invaginations and vesicle formation. Proc Natl Acad Sci USA 108:21016–21021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Raulston JE (1997) Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect Immun 65:4539–45447

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28:1397–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Read TD, Myers GS, Brunham RC, Nelson WC, Paulsen IT, Heidelberg J, Holtzapple E, Khouri H, Federova NB, Carty HA, Umayam LA, Haft DH, Peterson J, Beanan MJ, White O, Salzberg SL, Hsia RC, McClarty G, Rank RG, Bavoil PM, Fraser CM (2003) Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31:2134–2147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Robertson DK, Gu L, Rowe RK, Beatty WL (2009) Inclusion biogenesis and reactivation of persistent Chlamydia trachomatis requires host cell sphingolipid biosynthesis. PLoS Pathog 5:e1000664

    Article  PubMed Central  PubMed  Google Scholar 

  58. Rockey DD, Fischer ER, Hackstadt T (1996) Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy. Infect Immun 64:4269–4278

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Roiko MS, Carruthers VB (2013) Functional dissection of Toxoplasma gondii perforin-like protein 1 reveals a dual domain mode of membrane binding for cytolysis and parasite egress. J Biol Chem 288:8712–8725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH, Ung K, Browne KA, Baran K, Bashtannyk-Puhalovich TA, Faux NG, Wong W, Porter CJ, Pike RN, Ellisdon AM, Pearce MC, Bottomley SP, Emsley J, Smith AI, Rossjohn J, Hartland EL, Voskoboinik I, Trapani JA, Bird PI, Dunstone MA, Whisstock JC (2007) A common fold mediates vertebrate defense and bacterial attack. Science 317:1548–1551

    Article  CAS  PubMed  Google Scholar 

  61. Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RH, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10:1765–1774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Saka HA, Valdivia RH (2010) Acquisition of nutrients by Chlamydiae: unique challenges of living in an intracellular compartment. Curr Opin Microbiol 13:4–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Schachter J (1978) Chlamydial infections (first of three parts). N Engl J Med 298:428–434

    Article  CAS  PubMed  Google Scholar 

  64. Schachter J (1978) Chlamydial infections (second of three parts). N Engl J Med 298:490–495

    Article  CAS  PubMed  Google Scholar 

  65. Schachter J (1978) Chlamydial infections (third part of three parts). N Engl J Med 298:540–549

    Article  CAS  PubMed  Google Scholar 

  66. Scidmore MA, Fischer ER, Hackstadt T (2003) Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect Immun 71:973–984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Shirai M, Hirakawa H, Kimoto M, Tabuchi M, Kishi F, Ouchi K, Shiba T, Ishii K, Hattori M, Kuhara S, Nakazawa T (2000) Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWL029 from USA. Nucleic Acids Res 28:2311–2314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Slade DJ, Lovelace LL, Chruzcz M, Minor W, Lebioda L, Sodetz JM (2008) Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit. J Mol Biol 379:331–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Smith GA, Marquis H, Jones S, Johnston NC, Portnoy DA, Goldfine H (1995) The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun 63:4231–4237

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759

    Article  CAS  PubMed  Google Scholar 

  71. Suchland RJ, Rockey DD, Bannantine JP, Stamm WE (2000) Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect Immun 68:360–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Taylor LD, Nelson DE, Dorward DW, Whitmire WM, Caldwell HD (2010) Biological characterization Chlamydia trachomatis plasticity zone MACPF domain family protein CT153. Infect Immun 78:2691–2699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Thomson NR, Holden MT, Carder C, Lennard N, Lockey SJ, Marsh P, Skipp P, O’Connor CD, Goodhead I, Norbertzcak H, Harris B, Ormond D, Rance R, Quail MA, Parkhill J, Stephens RS, Clarke IN (2008) Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 18:161–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Thomson NR, Yeats C, Bell K, Holden MT, Bentley SD, Livingstone M, Cerdeno-Tarraga AM, Harris B, Doggett J, Ormond D, Mungall K, Clarke K, Feltwell T, Hance Z, Sanders M, Quail MA, Price C, Barrell BG, Parkhill J, Longbottom D (2005) The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res 15:629–640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Todd WJ, Caldwell HD (1985) Chlamydia trachomatis host cell interactions: Ultrastructural studies on the mechanism of release of a biovar II strain from HeLa 229 cells. J Infect Dis 151:1037–1044

    Article  CAS  PubMed  Google Scholar 

  76. Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73:6199–6209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Uellner R, Zvelebil MJ, Hopkins J, Jones J, MacDougall LK, Morgan BP, Padock E, Waterfield MD, Griffiths GM (1997) Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J 16:7287–7296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Voigt A, Schofl G, Saluz HP (2012) The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens. PLoS One 7:e35097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Wang Y, Kahane S, Cutcliffe LT, Skilton RJ, Lambden PR, Clarke IN (2011) Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. PLoS Pathog 7:e1002258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Wang Y, Cutcliffe LT, Skilton RJ, Persson K, Bjartling C, Clarke IN (2013) Transformation of a plasmid-free, genital tract isolate of Chlamydia trachomatis with a plasmid vector carrying a deletion in CDS6 revealed that this gene regulated inclusion phenotype. Pathog Dis 67:100–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Whitworth T, Popov VL, Yu XJ, Walker DH, Bouyer DH (2005) Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar Typhimurium mediates phagosomal escape. Infect Immun 73:6668–6673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Wylie JL, Hatch GM, McClarty G (1997) Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J Bacteriol 179:7233–7242

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lacey D. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taylor, L.D., Nelson, D.E. (2014). Chlamydial MACPF Protein CT153. In: Anderluh, G., Gilbert, R. (eds) MACPF/CDC Proteins - Agents of Defence, Attack and Invasion. Subcellular Biochemistry, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8881-6_13

Download citation

Publish with us

Policies and ethics