Skip to main content

Modal Logic and the Vietoris Functor

  • Chapter
  • First Online:
Leo Esakia on Duality in Modal and Intuitionistic Logics

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 4))

Abstract

In [16], Esakia uses the Vietoris topology to give a coalgebra-flavored definition of topological Kripke frames, thus relating the Vietoris topology, modal logic and coalgebra. In this chapter, we sketch some of the thematically related mathematical developments that followed. Specifically, we look at Stone duality for the Vietoris hyperspace and the Vietoris powerlocale, and at recent work combining coalgebraic modal logic and the Vietoris functor.

Dedicated to the memory of Leo Esakia, who was and will remain a great source of inspiration, both as a logician and as a person

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramsky S (1991) A domain equation for bisimulation. Inform Comput 92(2):161–218

    Google Scholar 

  2. Abramsky S (1991) Domain theory in logical form. Ann Pure Appl Logic, 51(1–2):1–77. Second annual IEEE symposium on logic in computer science (Ithaca, NY, 1987)

    Google Scholar 

  3. Abramsky S (2005) A Cook’s tour of the finitary non-well-founded sets. In: Artemov S, Barringer H, d’Avila Garcez A, Lamb L, Woods J (eds) We will show them: essays in honour of Dov Gabbay, vol 1. College Publications, pp 1–18

    Google Scholar 

  4. Abramsky S, Jung A (1994) Domain theory. In: Handbook of logic in computer science, vol 3. Clarendon Press, Oxford, pp 1–168

    Google Scholar 

  5. Aczel P (1988) Non-well-founded sets. CSLI lecture notes, vol 14. Stanford University Center for the Study of Language and Information, Stanford, CA

    Google Scholar 

  6. Banaschewksi B, Mulvey C (1980) Stone-Čech compactification of locales. I. Houston J Math 6:301–312

    Google Scholar 

  7. Barwise J, Moss L (1996) Vicious circles. CSLI lecture notes, vol 60. CSLI Publications, Stanford, CA

    Google Scholar 

  8. Bezhanishvili G, Bezhanishvili N, Gabelaia D, Kurz A (2010) Bitopological duality for distributive lattices and Heyting algebras. Math Struct Comput Sci 20(3):359–393

    Article  Google Scholar 

  9. Bezhanishvili G, Bezhanishvili N, Harding J (2012) Modal compact Hausdorff spaces. J Logic Comput. doi:10.1093/logcom/exs030

  10. Bezhanishvili N, Kurz A (2007) Free modal algebras: a coalgebraic perspective. In: Mossakowski T, Montanari U, Haveraaen M (eds) Algebra and coalgebra in computer science. Lecture notes in computer science, vol 4624. Springer, Berlin, pp 143–157

    Google Scholar 

  11. Bílková M, Palmigiano A, Venema Y (2008) Proof systems for the coalgebraic cover modality. In: Areces C, Goldblatt R (eds) Advances in modal logic 7, Nancy 2008. College Publications, pp 1–21

    Google Scholar 

  12. Cîrstea C, Kurz A, Pattinson D, Schröder L, Venema Y (2011) Modal logics are coalgebraic. Comput J 54:524–538

    Article  Google Scholar 

  13. Coquand T, Sambin G, Smith J, Valentini S (2003) Inductively generated formal topologies. Ann Pure Appl Logic 124(1–3):71–106

    Article  Google Scholar 

  14. Cornish W (1975) On H. Priestley’s dual of the category of bounded distributive lattices. Mat Vesnik 12(27):329–332

    Google Scholar 

  15. Davey B, Galati J (2003) A coalgebraic view of Heyting duality. Studia Logica 75(3):259–270

    Google Scholar 

  16. Esakia L (1974) Topological Kripke models. Dokl Akad Nauk SSSR 214:298–301

    Google Scholar 

  17. Fine K (1975) Normal forms in modal logic. Notre Dame J Formal Logic 16(2):229–237

    Article  Google Scholar 

  18. Gierz G, Hofmann K, Keimel K, Lawson J, Mislove M, Scott D (2003) Continuous lattices and domains. Cambridge University Press, Cambridge

    Google Scholar 

  19. Hochster M (1969) Prime ideal structure in commutative rings. Trans Am Math Soc 142:43–60

    Article  Google Scholar 

  20. Isbell J (1972) Atomless parts of spaces. Math Scand 31:5–32

    Google Scholar 

  21. Janin D, Walukiewicz I (1995) Automata for the modal \(\mu \)-calculus and related results. In: Mathematical foundations of computer science 1995 (Prague). Lecture notes in computer science, vol 969. Springer, Berlin, pp 552–562

    Google Scholar 

  22. Johnstone P (1982) Stone spaces. Cambridge studies in advanced mathematics, vol 3. Cambridge University Press, Cambridge

    Google Scholar 

  23. Johnstone P (1985) Vietoris locales and localic semilattices. In: Continuous lattices and their applications (Bremen, 1982). Lecture notes in pure and applied mathematics, vol 101. Dekker, New York, pp 155–180

    Google Scholar 

  24. Jung A, Moshier M, Vickers S (2008) Presenting dcpos and dcpo algebras. In: Proceedings of the 24th conference on the mathematical foundations of programming semantics (MFPS XXIV). Electronic notes in theoretical computer science, vol 218, pp 209–229

    Google Scholar 

  25. Kegelmann M (2002) Continuous domains in logical form. Electron Notes Theor Comput Sci 49:1–166

    Article  Google Scholar 

  26. Kupke C, Kurz A, Venema Y (2004) Stone coalgebras. Theor Comput Sci 327(1–2):109–134

    Article  Google Scholar 

  27. Kupke C, Kurz A, Venema Y (2008) Completeness of the finitary Moss logic. In: Areces C, Goldblatt R (eds) Advances in modal logic 7, Nancy 2008. College Publications, pp 193–217

    Google Scholar 

  28. Kupke C, Kurz K, Venema Y (2012) Completeness for the coalgebraic cover modality. Logical Methods Comput Sci 8(3)

    Google Scholar 

  29. Kupke C, Pattinson D (2011) Coalgebraic semantics of modal logics: an overview. Theor Comput Sci 412:5070–5094

    Article  Google Scholar 

  30. Moss L (1999) Coalgebraic logic. Ann Pure Appl Logic 96:277–317 (Erratum published Ann Pure Appl Logic 99:241–259, 1999)

    Google Scholar 

  31. Palmigiano A (2004) A coalgebraic view on positive modal logic. Theor Comput Sci 327(1–2):175–195

    Article  Google Scholar 

  32. Palmigiano A, Venema Y (2007) Nabla algebras and Chu spaces. In: Mossakowski T, Montanari U, Haveraaen M (eds) Algebra and coalgebra in computer science. Second international conference, CALCO 2007, Bergen, Norway, 20–24 Aug 2007. LNCS, vol 4624. Springer, pp 394–408

    Google Scholar 

  33. Robinson E (1986) Power-domains, modalities and the Vietoris monad. Technical Report UCAM-CL-TR-98, University of Cambridge, Computer Laboratory, Oct 1986

    Google Scholar 

  34. Rutten J (2000) Universal coalgebra: a theory of systems. Theor Comput Sci 249(1):3–80. Modern algebra and its applications (Nashville, TN, 1996)

    Google Scholar 

  35. Simmons H (2004) The Vietoris modifications of a frame. Unpublished manuscript, 79 pp, available online at http://www.cs.man.ac.uk/~hsimmons/

  36. Trnková V (1980) General theory of relational automata. Fundamenta Informaticae 3(2):189–234

    Google Scholar 

  37. Venema Y, Vickers S, Vosmaer J (2013) Generalized powerlocales via relation lifting. Math Struct Comput Sci 23:142–199

    Google Scholar 

  38. Vickers S (1989) Topology via logic. Cambridge tracts in theoretical computer science, vol 5. Cambridge University Press, Cambridge

    Google Scholar 

  39. Vickers S (1997) Constructive points of powerlocales. Math Proc Cambridge Philos Soc 122:207–222

    Google Scholar 

  40. Vickers S (1993) Information systems for continuous posets. Theor Comput Sci 114(2):201–229

    Google Scholar 

  41. Vietoris L (1922) Bereiche zweiter Ordnung. Monatsh Math Phys 32(1):258–280

    Article  Google Scholar 

  42. Vosmaer J (2010) Logic, algebra and topology. Investigations into canonical extensions, duality theory and point-free topology. PhD thesis, Institute for Logic, Language and Computation, Dec 2010 (Promotores: M. Gehrke and Y. Venema)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Liang-Ting Chen and Steve Vickers for providing helpful pointers to the literature. Additionally, we would like to thank the anonymous referee, whose thorough criticism contributed significantly to the quality of this chapter, and in particular to the presentation and choice of contents in Sect. 6.3.2.3. Finally, we are grateful to Guram Bezhanishvili, who provided many suggestions for improving the presentation of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yde Venema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Venema, Y., Vosmaer, J. (2014). Modal Logic and the Vietoris Functor. In: Bezhanishvili, G. (eds) Leo Esakia on Duality in Modal and Intuitionistic Logics. Outstanding Contributions to Logic, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8860-1_6

Download citation

Publish with us

Policies and ethics