Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

This chapter presents a wide variety of finite elements of different shapes (quadrilaterals, hexahedra, triangles, tetrahedra, pyramids and wedges) useful for the numerical resolution of wave equations. More precisely, the H1, H(curl) and H(div) conforming finite elements are described in details by focusing on their spectral version which induces the important concept of mass-lumping for quadrilaterals and hexahedra. This concept enables us to construct performant algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The inverse of a n-diagonal matrix is not n-diagonal in general, which avoids the storage of \(M_{1,r}^{-1}\). The correct approach would be to invert \(M_{1,r}\) at each time-step by an iterative method. Since \(\varDelta t\) is generally small, moving from \(t_n\) to \(t_{n+1}\) requires few iterations. However, each iteration is expensive compared to the product by a diagonal matrix.

  2. 2.

    But, of course, not plane faces for hexahedra, unless the summits of a face are coplanar.

  3. 3.

    Unless all the faces are planes, which provides a linear mapping.

  4. 4.

    This difficulty is also troublesome for time-harmonic problems.

  5. 5.

    \(P_{1}\) is naturally mass-lumped by using the Trapezoidal rule for triangles and tetrahedra.

  6. 6.

    Unless by splitting tetrahedra into four hexahedra, which provides a very distorted mesh. This distortion leads to very bad performance in terms of accuracy and stability.

  7. 7.

    One must keep in mind that, besides the fact that the faces of tetrahedra lean on three edges and those of hexahedra on four, the first faces are plane while the second ones are not always plane. Thereby, even by sticking the edges of two triangular faces of two tetrahedra to the four edges of the quadrangular face of a an hexahedron, we get overlapping or underlapping of the elements. For this reason, pyramids and wedge are useful interfaces between tetrahedra and hexahedra.

  8. 8.

    More precisely, the use of polynomial functions does not keep the plane character of the triangular faces when one transforms a reference pyramid into a pyramid of any shape.

  9. 9.

    The (not obvious) H(curl)-conform character of this mapping for hexahedra is proven in the Annex of [8].

References

  1. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland (2002)

    Google Scholar 

  2. Ciarlet, P.G., Lions, J.-L.: Handbook of Numerical Analysis, vol. 2. North-Holland (1991)

    Google Scholar 

  3. Young, L.C.: An efficient finite element method for reservoir simulation. In: Proceedings of the 53rd Annual Fall Technical Conference and Exhibition of the Society of Petroleum Engineers of AIME. Houston, Texas Oct. 1–3 (1978)

    Google Scholar 

  4. Hennart, J.-P., Sainz, E., Villegas, M.: On the efficient use of the finite element method in static neutron diffusion calculations. Comput. Methods Nucl. Eng. 1, 3–87 (1979)

    Google Scholar 

  5. Maday, Y., Patera, A.T.: Spectral element methods for the imcompressible Navier-Stokes equations. In: Noor, A.K. (ed.) State of the Art Survey in Computational Mechanics, pp. 71–143 (1989)

    Google Scholar 

  6. Cohen, G., Joly, P., Tordjman, N.: Higher-order finite elements with mass lumping for the 1-D wave equation. Finite Elem. Anal. Des. 17(3–4), 329–336 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tordjman, N.: Eléments finis d’ordre élevé avec condensation de masse pour l’équation des ondes, thèse de doctorat, U. Paris IX-Dauphine (1995)

    Google Scholar 

  8. Cohen, G.: High Order Numerical Methods for Transient Wave Equations, Scientific Computation. Springer, Heidelberg (2001)

    Google Scholar 

  9. Hesthaven, J.S.: From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal. 35(2), 655–676 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods. In: Texts in Applied Mathematics, vol. 54. Springer, Heidelberg (2008)

    Google Scholar 

  11. Seriani, G., Priolo, E.: Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des. 16(3–4), 337–348 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6(4), 345–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gordon, W., Hall, C.: Transfinite element methods: blending functions interpolation over arbitrary element domains. Numer. Math. 21, 109–129 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duruflé, M.: Intégration numérique et éléments finis d’ordre élevé appliqués aux équations de Maxwell en régime harmonique, thèse de doctorat, U. de Paris-Dauphine (2006)

    Google Scholar 

  15. Hesthaven, J.S., Teng, C.H.: Stable spectral methods on tetrahedral elements. SIAM J. Sci. Comput. 21(6), 2352–2380 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen, G., Elmkies, A.: Eléments finis triangulaires  \(P_2\) avec condensation de masse pour l’équation des ondes, INRIA Report RR-2418 (1994)

    Google Scholar 

  17. Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38(6), 12047–2078 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chin-Joe-Kong, M.J.S., Mulder, W.A., van Veldhuizen, M.: Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation. J. Eng. Math. 35, 405–426 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Duffy, M.G.: Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19(6), 1260–1262 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karniadakis, G., Sherwin, S.J.: Spectral/hp Element Methods for CFD, 2nd edn. Oxford University Press, Oxford (2005)

    Google Scholar 

  21. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover Publications, New York (1972)

    MATH  Google Scholar 

  22. Giraldo, F.X., Taylor, M.A.: A diagonal mass matrix triangular spectral element method based on cubature points. J. Eng. Math. 56(3), 307–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bedrosian, G.: Shape functions and integration formulas for three-dimensional finite element analysis. Int. J. Numer. Methods Eng. 35, 95–108 (1992)

    Article  MATH  Google Scholar 

  24. Zgainski, F.X., Coulomb, J.C., Marchal, Y., Claeyssen, F., Brunotte, X.: A new family of finite elements: the pyramidal elements. IEEE Trans. Magn. 32(3), 1393–1396 (1996)

    Article  Google Scholar 

  25. Graglia, R.D., Wilton, D.R., Peterson, A.F., Gheorma, I.-L.: Higher order interpolatory vector bases on pyramidal elements. IEEE Trans. Antennas Propag. 47(5), 775–782 (1999)

    Article  MATH  Google Scholar 

  26. Chatzi, V., Preparata, F.P.: Using Pyramids in Mixed Meshes—Point Placement and Basis Functions. Brown University, Providence (2000)

    Google Scholar 

  27. Solín, P., Segeth, K., Dolezel, I.: Higher-order finite elements methods. In: Studies in Advanced Mathematics. Chapman and Hall, London (2003)

    Google Scholar 

  28. Szabó, B.A., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)

    Google Scholar 

  29. Sherwin, S.J.: Hierarchical HP finite element in hybrid domains. Finite Elem. Anal. Des. 27(1), 109–119 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sherwin, S.J., Warburton, T., Karniadakis, G.E.: Spectral/HP methods for elliptic problems on hybrid grids. Contemp. Math. 218, 191–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Warburton, T.: Spectral/HP Methods on Polymorphic Multi-Domains: Algorithms and Applications. Brown University, Providence (1999)

    Google Scholar 

  32. Bergot, M., Cohen, G., Duruflé, M.: Higher-order finite element for hybrid meshes using new nodal pyramidal elements. J. Sci. Comput. 42(3), 345–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zaglmayr, S.: High order finite element methods for electromagnetic field computation, Ph.D. thesis, Johannes Kepler University, Linz Austria (2006)

    Google Scholar 

  34. Radau, R.: Etudes sur les formules d’approximation qui servent à calculer la valeur d’une intégrale définie. J. Math. Pures Appl. 6, 283–336 (1880)

    Google Scholar 

  35. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals. Elsevier, Amsterdam (2005)

    Google Scholar 

  36. Bergot, M.: Eléments finis d’ordre élevé pour maillages hybrides. Application à la résolution de systèmes hyperboliques linéaires en régimes harmonique et temporel, thèse de doctorat, U. de Paris-Dauphine (Paris IX) (2010)

    Google Scholar 

  37. Bergot, M., Duruflé, M.: Higher-order discontinuous Galerkin method for pyramidal elements using orthogonal basis. Numer. Methods Part. Differ. Eq. 29(1), 144–169 (2013)

    Article  MATH  Google Scholar 

  38. Fraeijs de Veubeke, B.M.: Displacement and Equilibrium Models in Stress Analysis. In: Zienkiewicz, O.C., Hollister, G. (eds.) pp. 145-197. Wiley, London (1965), (reprinted in Int. J. Numer. Methods Eng. 52, 287–342, 2001)

    Google Scholar 

  39. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Dold, A., Eckmann, B. (eds.) Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics vol. 606. Springer, Heidelberg (1977)

    Google Scholar 

  40. Nédélec, J.-C.: Mixed finite elements in \({I\!\! R}^3\). Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nédélec, J.-C.: A new family of mixed finite elements in \({I \!\! R}^3\). Numer. Math. 50(1), 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Monk, P.: Finite element methods for Maxwell’s equations. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2003)

    Google Scholar 

  43. Bergot, M., Lacoste, P.: Generation of higher-order polynomial bases of Nédélec H(curl) finite elements for Maxwell’s equations. J. Comput. Appl. Math. 234(6), 1937–1944 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Savage, J.S., Peterson, A.F.: Higher-order vector finite element for tetrahedral cells. IEEE Trans. Microw. Theory Tech. 44(6) (1996)

    Google Scholar 

  45. Mur, G., de Hoop, A.T.: A finite-element method for computing three-dimensional electromagnetic fields in inhomogeneous media. IEEE Trans. Magn. 21(6), 2188–2191 (1985)

    Article  Google Scholar 

  46. Elmkies, A.: Sur les éléments finis d’arête pour la résolution des équations de Maxwell en milieu anisotrope et pour des maillages quelconques, thèse de doctorat, U. de Paris Sud-Orsay (Paris XI) (1998)

    Google Scholar 

  47. Cohen, G., Monk, P.: Gauss point mass lumping schemes for Maxwell’s equations. Numer. Methods Part. Differ. Eq. 14(1), 63–88 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yee, K.: Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

  49. Cohen, G., Monk, P.: Mur-Nédélec finite element schemes for Maxwell’s equations. Comput. Methods Appl. Mech. Eng. 169(3–4), 197–217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Cohen, G., Duruflé, M.: Non spurious spectral-like element methods for Maxwell’s equations. J. Comput. Math. 25(3), 282–304 (2007)

    MathSciNet  Google Scholar 

  51. Demkowicz, L., Kurtz, J., Pardo, D., Paszynski, M., Rachowicz, W., Zdunek, A.: Computing with HP Finite Elements. II. Frontiers, Three-Dimensional Elliptic and Maxwell Problems with Applications. Chapman and Hall/CRC, London (2007)

    Google Scholar 

  52. Bergot, M., Duruflé, M.: High-order optimal edge elements for pyramids, prisms and hexahedra. J. Comput. Phys. 232(1), 189–213 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Bergot, M., Duruflé, M.: Approximation of H(div) with high-order optimal finite elements for pyramids, prisms and hexahedra. Commun. Comput. Phys. 14(5), 1372–1414 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Cohen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cohen, G., Pernet, S. (2017). Definition of Different Types of Finite Elements. In: Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7761-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7761-2_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7759-9

  • Online ISBN: 978-94-017-7761-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics