Skip to main content

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 60))

  • 1196 Accesses

Abstract

From Chaps. 6–10, it can be said that the gas phase generation of CNPs and their deposition into films and nanostructures are quite general in the CVD and some PVD processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blum J (2006) Dust agglomeration. Adv Phys 55(7–8):881-947. doi:10.1080/00018730601095039

    Google Scholar 

  • Blum J, Wurm G (2008) The growth mechanisms of macroscopic bodies in protoplanetary disks. Annu Rev Astron Astr 46(1):21–56. doi:10.1146/annurev.astro.46.060407.145152

    Google Scholar 

  • Cölfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. Wiley, p 73–101

    Google Scholar 

  • Desch SJ, Cuzzi JN (2000) The generation of lightning in the solar nebula. Icarus 143(1):87–105. doi:http://dx.doi.org/10.1006/icar.1999.6245

    Google Scholar 

  • Fu H, Li H, Jie W, Zhang C (2007) The O2-dependent growth of ZnO nanowires and their photoluminescence properties. Ceram Int 33(6):1119–1123. doi:http://dx.doi.org/10.1016/j.ceramint.2006.03.024

    Google Scholar 

  • Ivlev AV, Morfill GE, Konopka U (2002) Coagulation of charged microparticles in neutral gas and charge-induced gel transitions. Phys Rev Lett 89(19):195502

    Google Scholar 

  • Kong XY, Wang ZL (2004) Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals. Appl Phys Lett 84(6):975–977

    Google Scholar 

  • Kong XY, Ding Y, Yang R, Wang ZL (2004) Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303(5662):1348–1351

    Google Scholar 

  • Korgel BA (2004) Self-assembled nanocoils. Science 303(5662):1308–1309

    Google Scholar 

  • Pan ZW, Dai ZR, Xu L, Lee ST, Wang ZL (2001) Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J Phys Chem B 105(13):2507–2514. doi:10.1021/jp004253q

    Google Scholar 

  • Poppe T, Schräpler R (2005) Further experiments on collisional tribocharging of cosmic grains. A&A 438(1):1–9

    Google Scholar 

  • Poppe T, Blum J, Henning T (2000) Experiments on collisional grain charging of micron-sized preplanetary dust. Astrophys J 533(1):472

    Google Scholar 

  • Swain B, Park J-W, Yang S-M, Mahmood K, Swain B, Lee J-G, Hwang N-M (2015) Alignment of nanoparticles, nanorods, and nanowires during chemical vapor deposition of silicon. Appl Phys A 120(3):889–895. doi:10.1007/s00339-015-9310-1

    Google Scholar 

  • Wagner R, Ellis W (1964) Vapor‐liquid‐solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90

    Google Scholar 

  • Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys: Condens Matter 16(25):829-858

    Google Scholar 

  • Wang ZL (2006a) Chapter 10 - Novel nanostructures and nanodevices of ZnO. In: Jagadish C, Pearton S (eds) Zinc oxide bulk, Thin films and nanostructures. Elsevier, Oxford, pp 339–370. doi:http://dx.doi.org/10.1016/B978-008044722-3/50010-5

    Google Scholar 

  • Wang ZL (2006b) Novel nanostructures and nanodevices of ZnO. Amsterdam, Elsevier,

    Google Scholar 

  • Wang ZL, Kong XY, Zuo JM (2003) Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys Rev Lett 91(18):185502.

    Google Scholar 

  • Yao BD, Chan YF, Wang N (2002) Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl Phys Lett 81(4):757.

    Google Scholar 

  • Youn W-K, Lee S-S, Lee J-Y, Kim C-S, Hwang N-M, Iijima S (2014) Comparison of the deposition behavior of charged silicon nanoparticles between floating and grounded substrates. J Phys Chem C 118(22):11946–11953. doi:10.1021/jp5001144

    Google Scholar 

  • Zhang RQ, Lifshitz Y, Lee ST (2003) Oxide-assisted growth of semiconducting nanowires. Adv Mater 15(7–8):635-640. doi:10.1002/adma.200301641.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Moon Hwang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hwang, N. (2016). Deposition Behavior of Charged Nanoparticles. In: Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes. Springer Series in Surface Sciences, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7616-5_11

Download citation

Publish with us

Policies and ethics