Skip to main content

Pharmacology of the Lower Urinary Tract

  • Chapter
  • First Online:
Neurourology

Abstract

The functions of the lower urinary tract, to store and periodically release urine, are dependent on the activity of smooth and striated muscles in the urinary bladder, urethra, and external urethral sphincter. This activity is in turn controlled by neural circuits in the brain, spinal cord, and peripheral ganglia. Various neurotransmitters, including acetylcholine, norepinephrine, dopamine, serotonin, excitatory and inhibitory amino acids, adenosine triphosphate, nitric oxide, and neuropeptides, both in the periphery and the central nervous system have been implicated in the neural regulation of the lower urinary tract. Injuries or diseases of the nervous system, as well as drugs and disorders of the peripheral organs, can produce lower urinary tract dysfunctions such as urinary frequency, urgency, pain and incontinence or inefficient voiding and urinary retention. This chapter will review recent advances in our understanding of the pharmacology in the control of lower urinary tract function and the targets for drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Somogyi GT, Tanowitz M, de Groat WC. M-1 muscarinic receptor mediated facilitation of acetylcholine release in the rat urinary bladder but not in the heart. J Physiol. 1994;480:81–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang P, Luthin GR, Ruggieri MR. Muscarinic acetylcholine receptor subtypes mediating urinary bladder contractility and coupling to GTP binding proteins. J Pharmacol Exp Ther. 1995;273:959–66.

    CAS  PubMed  Google Scholar 

  3. Eglen RS, Hedge SS, Watson N. Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev. 1996;48:531.

    CAS  PubMed  Google Scholar 

  4. Yamaguchi O, Shishido K, Tamura K, Ogawa T, Fujimura T, Ohtsuka M. Evaluation of mRNAs encoding muscarinic receptor subtypes in human detrusor muscle. J Urol. 1996;156:1208–13.

    Article  CAS  PubMed  Google Scholar 

  5. Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, et al. Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol. 1997;120:1409–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kondo S, Morita T, Tashima Y. Muscarinic cholinergic receptor subtypes in human detrusor muscle studied by labeled and nonlabeled pirenzepine, AFDX-116 and 4DAMP. Urol Int. 1995;54:150–3.

    Article  CAS  PubMed  Google Scholar 

  7. Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev. 2004;56:581–631.

    Article  CAS  PubMed  Google Scholar 

  8. Mansfield KJ, Liu L, Mitchelson FJ, Moore KH, Millard RJ, Burcher E. Muscarinic receptor subtypes in human bladder detrusor and mucosa, studied by radioligand binding and quantitative competitive RT-PCR: changes in ageing. Br J Pharmacol. 2005;144:1089–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eglen RM, Reddy H, Watson N, Challiss RA. Muscarinic acetylcholine receptor subtypes in smooth muscle. Trends Pharmacol Sci. 1994;15:114–9.

    Article  CAS  PubMed  Google Scholar 

  10. Harriss DR, Marsh KA, Birmingham AT, Hill SJ. Expression of muscarinic M3-receptors coupled to inositol phospholipid hydrolysis in human detrusor cultured smooth muscle cells. J Urol. 1995;154:1241–5.

    Article  CAS  PubMed  Google Scholar 

  11. Lai FM, Cobuzzi A, Spinelli W. Characterization of muscarinic receptors mediating the contraction of the urinary detrusor muscle in cynomolgus monkeys and guinea pigs. Life Sci. 1998;62:1179–86.

    Article  CAS  PubMed  Google Scholar 

  12. Sellers DJ, Chess-Williams R. Muscarinic agonists and antagonists: effects on the urinary bladder. Handb Exp Pharmacol. 2012;208:375–400.

    Article  CAS  Google Scholar 

  13. Fry CH, Skennerton D, Wood D, Wu C. The cellular basis of contraction in human detrusor smooth muscle from patients with stable and unstable bladders. Urology. 2002;59:3–12.

    Article  PubMed  Google Scholar 

  14. Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev. 2004;84:935–86.

    Article  CAS  PubMed  Google Scholar 

  15. Schneider T, Fetscher C, Krege S, Michel MC. Signal transduction underlying carbachol-induced contraction of human urinary bladder. J Pharmacol Exp Ther. 2004;309:1148–53.

    Article  CAS  PubMed  Google Scholar 

  16. Schneider T, Hein P, Michel MC. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. I. Phospholipases and Ca2+ sources. J Pharmacol Exp Ther. 2004;308:47–53.

    Article  CAS  PubMed  Google Scholar 

  17. Frazier EP, Peters SL, Braverman AS, Ruggieri MR Sr, Michel MC. Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and beta-adrenoceptors. Naunyn Schmiedeberg's Arch Pharmacol. 2008;377:449–62.

    Article  CAS  Google Scholar 

  18. Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, Matsui M. The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther. 2005;313:368–78.

    Article  CAS  PubMed  Google Scholar 

  19. Braverman AS, Ruggieri MR Sr. Hypertrophy changes the muscarinic receptor subtype mediating bladder contraction from M3 toward M2. Am J Physiol Regul Integr Comp Physiol. 2003;285:R701–8.

    Article  PubMed  Google Scholar 

  20. Braverman AS, Doumanian LR, Ruggieri MR Sr. M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. II. Denervated rat bladder. J Pharmacol Exp Ther. 2006;316:875–80.

    Article  CAS  PubMed  Google Scholar 

  21. Braverman AS, Tibb AS, Ruggieri MR Sr. M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. I. Normal rat bladder. J Pharmacol Exp Ther. 2006;316:869–74.

    Article  CAS  PubMed  Google Scholar 

  22. Pontari MA, Braverman AS, Ruggieri MR Sr. The M2 muscarinic receptor mediates in vitro bladder contractions from patients with neurogenic bladder dysfunction. Am J Physiol Regul Integr Comp Physiol. 2004;286:R874–80.

    Article  CAS  PubMed  Google Scholar 

  23. Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, et al. Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci U S A. 2000;97:9579–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsui M, Motomura D, Fujikawa T, Jiang J, Takahashi S, Manabe T. Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable. J Neurosci. 2002;22:10627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Igawa Y, Zhang X, Nishizawa O, Umeda M, Iwata A, Taketo MM, et al. Cystometric findings in mice lacking muscarinic M2 or M3 receptors. J Urol. 2004;172:2460–4.

    Article  CAS  PubMed  Google Scholar 

  26. D'Agostino G, Kilbinger H, Chiari MC, Grana E. Presynaptic inhibitory muscarinic receptors modulating [3H] acetylcholine release in the rat urinary bladder. J Pharmacol Exp Ther. 1986;239:522–8.

    CAS  PubMed  Google Scholar 

  27. Somogyi GT, de Groat WC. Evidence for inhibitory nicotinic and facilitatory muscarinic receptors in cholinergic nerve terminals of the rat urinary bladder. J Auton Nerv Syst. 1992;37:89–S97.

    Article  CAS  PubMed  Google Scholar 

  28. Somogyi GT, M Tanowitz. M1 muscarinic receptor facilitation of ACh and noradrenaline release in the rat urinary bladder is mediated by protein kinase C. J Physiol. 1996; 496:245–254.

    Google Scholar 

  29. D'Agostino G, Tanowitz M, Zernova G, de Groat WC. M4 muscarinic autoreceptor-mediated inhibition of -3H-acetylcholine release in the rat isolated urinary bladder. J Pharmacol Exp Ther. 1997;283:750–6.

    CAS  PubMed  Google Scholar 

  30. Braverman AS, Kohn IJ, Luthin GR, Ruggieri MR. Prejunctional M1 facilitory and M2 inhibitory muscarinic receptors mediate rat bladder contractility. Am J Phys. 1998;274:R517–23.

    CAS  Google Scholar 

  31. D'Agostino G, Bolognesi ML, Lucchelli A, Vicini D, Balestra B, Spelta V. Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 receptor subtype. Br J Pharmacol. 2000;129:493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Somogyi GT, Zernova GV, Tanowitz M, de Groat WC. Role of L- and N-type Ca2+ channels in muscarinic receptor-mediated facilitation of ACh and noradrenaline release in the rat urinary bladder. J Physiol. 1997;499:645–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Groat WC, Booth AM. Synaptic transmission in pelvic ganglia. C. A. Maggi. London. Harwood Academic Publishers. 1993;1:291–347.

    Google Scholar 

  34. Michel MC. Therapeutic modulation of urinary bladder function: multiple targets at multiple levels. Annu Rev Pharmacol Toxicol. 2015;55:269–87.

    Article  CAS  PubMed  Google Scholar 

  35. Hanna-Mitchell AT, Beckel JM, Barbadora S, Kanai AJ, de Groat WC, Birder LA. Non-neuronal acetylcholine and urinary bladder urothelium. Life Sci. 2007;80:2298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McLatchie LM, Young JS, Fry CH. Regulation of ACh release from guinea pig bladder urothelial cells: potential role in bladder filling sensations. Br J Pharmacol. 2014;171:3394–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nandigama R, Bonitz M, Papadakis T, Schwantes U, Bschleipfer T, Kummer W. Muscarinic acetylcholine receptor subtypes expressed by mouse bladder afferent neurons. Neuroscience. 2010;168:842–50.

    Article  CAS  PubMed  Google Scholar 

  38. De Wachter S, Wyndaele JJ. Intravesical oxybutynin: a local anesthetic effect on bladder C afferents. J Urol. 2003;169:1892–5.

    Article  PubMed  CAS  Google Scholar 

  39. Iijima K, De Wachter S, Wyndaele JJ. Effects of the M3 receptor selective muscarinic antagonist darifenacin on bladder afferent activity of the rat pelvic nerve. Eur Urol. 2007;52:842–7.

    Article  PubMed  Google Scholar 

  40. Matsumoto Y, Miyazato M, Furuta A, Torimoto K, Hirao Y, Chancellor MB. Differential roles of M2 and M3 muscarinic receptor subtypes in modulation of bladder afferent activity in rats. Urology. 2010;75:862–7.

    Article  PubMed  Google Scholar 

  41. Matsumoto Y, Miyazato M, Yokoyama H, Kita M, Hirao Y, Chancellor MB. Role of M2 and M3 muscarinic acetylcholine receptor subtypes in activation of bladder afferent pathways in spinal cord injured rats. Urology. 2012; 79:1184. e15–20.

    Google Scholar 

  42. Chess-Williams R, Hashitani H. Cell biology (Committee 2). In: Incontinence, 6th Edition, 6th International Consultation on Incontinence, Tokyo, Japan; 2017.p. 143–258.

    Google Scholar 

  43. Johnston L, Carson C, Lyons AD, Davidson RA, McCloskey KD. Cholinergic-induced Ca2+ signaling in interstitial cells of Cajal from the guinea pig bladder. Am J Physiol Renal Physiol. 2008;294:F645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim SO, Jeong HS. Spontaneous electrical activity of cultured interstitial cells of cajal from mouse urinary bladder. Korean J Physiol Pharmacol. 2013;17:531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burnstock G, Dumsday B, Smythe A. Atropine resistant excitation of the urinary bladder: the possibility of transmission via nerves releasing a purine nucleotide. Br J Pharmacol. 1972;44:451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chancellor MB, Kaplan SA, Blaivas JG. The cholinergic and purinergic components of detrusor contractility in a whole rabbit bladder model. J Urol. 1992;148:906–9.

    Article  CAS  PubMed  Google Scholar 

  47. Burnstock G. P2 purinoceptors: historical perspective and classification. Ciba Found Symp. 1996;198:1–28; discussion 29–34.

    CAS  PubMed  Google Scholar 

  48. Palea S, Artibani W, Ostardo E, Trist DG, Pietra C. Evidence for purinergic neurotransmission in human urinary bladder affected by interstitial cystitis. J Urol. 1993;150:2007–12.

    Article  CAS  PubMed  Google Scholar 

  49. Burnstock G. In: Abbracchio M, Williams W, editors. Handbook of experimental pharmacology on “Purinergic and Pyrimidinergic Signalling”. Berlin: Springer; 2000.

    Google Scholar 

  50. O'Reilly BA, Kosaka AH, Chang TK, Ford AP, Popert R, McMahon SB. A quantitative analysis of purinoceptor expression in the bladders of patients with symptomatic outlet obstruction. BJU Int. 2001;87:617–22.

    Article  CAS  PubMed  Google Scholar 

  51. Inoue R, Brading AF. The properties of the ATP-induced depolarization and current in single cells isolated from the guinea-pig urinary bladder. Br J Pharmacol. 1990;100:619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Inoue T, Gabella G. A vascular network closely linked to the epithelium of the urinary bladder of the rat. Cell Tissue Res. 1991;263:137–43.

    Article  CAS  PubMed  Google Scholar 

  53. McMurray G, Dass N. Purinergic mechanisms in primate urinary bladder. Br J Urol. 1997;80:182.

    Google Scholar 

  54. Lee HY, Bardini M, Burnstock G. Distribution of P2X receptors in the urinary bladder and the ureter of the rat. J Urol. 2000;163:2002–7.

    Article  CAS  PubMed  Google Scholar 

  55. Valera S, Talabot F, Evans RJ, Gos A, Antonarakis SE, Morris MA. Characterization and chromosomal localization of a human P2X receptor from the urinary bladder. Receptors Channels. 1995;3:283–9.

    CAS  PubMed  Google Scholar 

  56. O'Reilly BA, Kosaka AH, Chang TK, Ford AP, Popert R, Rymer JM, et al. A quantitative analysis of purinoceptor expression in human fetal and adult bladders. J Urol. 2001;165:1730–4.

    Article  CAS  PubMed  Google Scholar 

  57. Burnstock G. Purine-mediated signalling in pain and visceral perception. Trends Pharmacol Sci. 2001;22:182–8.

    Article  CAS  PubMed  Google Scholar 

  58. Theobald RJ Jr, de Groat WD. The effects of purine nucleotides on transmission in vesical parasympathetic ganglia of the cat. J Auton Pharmacol. 1989;9:167–81.

    Article  CAS  PubMed  Google Scholar 

  59. Nishimura T, Tokimasa T. Purinergic cation channels in neurons of rabbit vesical parasympathetic ganglia. Neurosci Lett. 1996;212:215–7.

    Article  CAS  PubMed  Google Scholar 

  60. Zhong Y, Dunn PM, Xiang Z, Bo X, Burnstock G. Pharmacological and molecular characterization of P2X receptors in rat pelvic ganglion neurons. Br J Pharmacol. 1998;125:771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhong Y, Dunn PM. Burnstock. Multiple P2X receptors on guinea-pig pelvic ganglion neurons exhibit novel pharmacological properties. Br J Pharmacol. 2001;132:221–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ferguson DR, Kennedy I, Burton TJ. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes--a possible sensory mechanism? J Physiol. 1997;505:503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG, Knight GE, et al. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol. 2005;567:621–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature. 2000;407:1011–5.

    Article  CAS  PubMed  Google Scholar 

  65. Takezawa K, Kondo M, Kiuchi H, Ueda N, Soda T, Fukuhara S, et al. Authentic role of ATP signaling in micturition reflex. Sci Rep. 2016;6:19585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Takezawa K, Kondo M, Nonomura N, Shimada S. Urothelial ATP signaling: what is its role in bladder sensation? Neurourol Urodyn. 2017;36:966–72.

    Article  CAS  PubMed  Google Scholar 

  67. Wang EC, Lee JM, Ruiz WG, Balestreire EM, von Bodungen M, Barrick S, et al. ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest. 2005;115:2412–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhong Y, Banning AS, Cockayne DA, Ford AP, Burnstock G, Mcmahon SB, et al. Bladder and cutaneous sensory neurons of the rat express different functional P2X receptors. Neuroscience. 2003;120:667–75.

    Article  CAS  PubMed  Google Scholar 

  69. Dang K, Bielefeldt K, Gebhart GF. Differential responses of bladder lumbosacral and thoracolumbar dorsal root ganglion neurons to purinergic agonists, protons, and capsaicin. J Neurosci. 2005;25:3973–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dmitrieva N, Burnstock G. ATP and 2-methylthio ATP activate bladder reflexes and induce discharge of bladder sensory neurones. Soc Neurosci Abstr. 1998;24:2088.

    Google Scholar 

  71. Namasivayam S, Eardley I, Morrison JF. Purinergic sensory neurotransmission in the urinary bladder: an in vitro study in the rat. BJU Int. 1999;84:854–60.

    Article  CAS  PubMed  Google Scholar 

  72. Pandita RK, Andersson KE. Intravesical adenosine triphosphate stimulates the micturition reflex in awake, freely moving rats. J Urol. 2002;168:1230–4.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang X, Igawa Y, Ishizuka O, Nishizawa O, Andersson KE. Effects of resiniferatoxin desensitization of capsaicin-sensitive afferents on detrusor over-activity induced by intravesical capsaicin, acetic acid or ATP in conscious rats. Naunyn Schmiedeberg's Arch Pharmacol. 2003;367:473–9.

    Article  CAS  Google Scholar 

  74. Nishiguchi J, Hayashi Y, Chancellor MB, de Miguel F, de Groat WC, Kumon H, et al. Detrusor overactivity induced by intravesical application of adenosine 5′-triphosphate under different delivery conditions in rats. Urology. 2005;66:1332–7.

    Article  PubMed  Google Scholar 

  75. Morrison J, Namasivayam S, Eardley I. ATP may be a natural modulator of the sensitivity of bladder mechanoreceptors during slow distensions. 1st International Consultation on Incontinence;1998. Monaco, p 84.

    Google Scholar 

  76. Akasu TP, Shinnick-Gallagher P. Gallagher JP Adenosine mediates a slow hyperpolarizing synaptic potential in autonomic neurones. Nature. 1984;311:62–5.

    Article  CAS  PubMed  Google Scholar 

  77. Olah ME, Ren H, Stiles GL. Adenosine receptors: protein and gene structure. Arch Int Pharmacodyn Ther. 1995;329:135–50.

    CAS  PubMed  Google Scholar 

  78. Fry CH, Ikeda Y, Harvey R, Wu C, Sui GP. Control of bladder function by peripheral nerves: avenues for novel drug targets. Urology. 2004;63:24–31.

    Article  PubMed  Google Scholar 

  79. Yu W, Zacharia LC, Jackson EK, Apodaca G. Adenosine receptor expression and function in bladder uroepithelium. Am J Physiol Cell Physiol. 2006;291:C254–65.

    Article  CAS  PubMed  Google Scholar 

  80. Durnin L. Hayoz, Corrigan RD, Yanez A, Koh SD, Mutafova-Yambolieva VN. Urothelial purine release during filling of murine and primate bladders. Am J Physiol Renal Physiol. 2016;311:F708–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Andersson KE. Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. [Review]. Pharmacol Rev. 1993;45:253–308.

    Google Scholar 

  82. Morita T, Ando M, Kihara K, Oshima H. Species differences in cAMP production and contractile response induced by beta-adrenoceptor subtypes in urinary bladder smooth muscle. Neurourol Urodyn. 1993;12:185–90.

    Article  CAS  PubMed  Google Scholar 

  83. Levin RM, Wein AJ. Neurophysiology and neuropharmacology. Bladder. J. Fitzpatrick and R. Krane. New York, Churchill Livingstone; 1995; p. 47–70.

    Google Scholar 

  84. Nishimoto T, Latifpour J, Wheeler MA, Yoshida M, Weiss RM. Age-dependent alterations in beta-adrenergic responsiveness of rat detrusor smooth muscle. J Urol. 1995;153:1701–5.

    Article  CAS  PubMed  Google Scholar 

  85. Igawa Y, Yamazaki Y, Takeda H, Hayakawa K, Akahane M, Ajisawa Y. Functional and molecular biological evidence for a possible beta3-adrenoceptor in the human detrusor muscle. Br J Pharmacol. 1999;126:819–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yamaguchi O. Beta3-adrenoceptors in human detrusor muscle. Urology. 2002;59:25–9.

    Article  PubMed  Google Scholar 

  87. Nomiya M, Yamaguchi O. A quantitative analysis of mRNA expression of alpha 1 and beta-adrenoceptor subtypes and their functional roles in human normal and obstructed bladders. J Urol. 2003;170:649–53.

    Article  CAS  PubMed  Google Scholar 

  88. Coelho A, Antunes-Lopes T, Gillespie J, Cruz F. Beta-3 adrenergic receptor is expressed in acetylcholine-containing nerve fibers of the human urinary bladder: An immunohistochemical study. Neurourol Urodyn. 2017;197:785.

    Google Scholar 

  89. Silva I, Costa AF, Moreira S, Ferreirinha F, Magalhães-Cardoso MT, et al. Inhibition of cholinergic neurotransmission by beta3-adrenoceptors depends on adenosine release and A1-receptor activation in human and rat urinary bladders. Am J Physiol Renal Physiol. 2017;313:388–403.

    Article  CAS  Google Scholar 

  90. Murakami S, Chapple CR, Akino H, Sellers DJ, Chess-Williams R. The role of the urothelium in mediating bladder responses to isoprenaline. BJU Int. 2007;99:669–73.

    Article  CAS  PubMed  Google Scholar 

  91. Otsuka A, Shinbo H, Matsumoto R, Kurita Y, Ozono S. Expression and functional role of beta-adrenoceptors in the human urinary bladder urothelium. Naunyn Schmiedeberg's Arch Pharmacol. 2008;377:473–81.

    Article  CAS  Google Scholar 

  92. Bridgeman MB, Friia NJ, Taft C, Shah M. Mirabegron: beta3-adrenergic receptor agonist for the treatment of overactive bladder. Ann Pharmacother. 2013;4:1029–38.

    Article  CAS  Google Scholar 

  93. Abrams P, Kelleher C, Staskin D, Rechberger T, Kay R. Martina. Combination treatment with mirabegron and solifenacin in patients with overactive bladder: efficacy and safety results from a randomised, double-blind, dose-ranging, phase 2 study (Symphony). Eur Urol. 2015;67:577–88.

    Article  CAS  PubMed  Google Scholar 

  94. Aizawa N, Homma Y, Igawa Y. Effects of L-arginine, mirabegron, and oxybutynin on the primary bladder afferent nerve activities synchronized with reflexic, rhythmic bladder contractions in the rat. Neurourol Urodyn. 2015;34:368–74.

    Article  CAS  PubMed  Google Scholar 

  95. Sadananda P, Drake MJ, Paton JF, Pickering AE. A functional analysis of the influence of beta3-adrenoceptors on the rat micturition cycle. J Pharmacol Exp Ther. 2013;347:506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aizawa N, Gandaglia G, Hedlund P, Fujimura T, Fukuhara H, Montorsi F, et al. URB937, a peripherally restricted inhibitor for fatty acid amide hydrolase, reduces prostaglandin E2-induced bladder overactivity and hyperactivity of bladder mechano-afferent nerve fibres in rats. BJU Int. 2015;117:821–8.

    Article  PubMed  CAS  Google Scholar 

  97. Hampel C, Dolber PC, Smith MP, Savic SL. Th roff JW, Thor KB, et al. Modulation of bladder alpha1-adrenergic receptor subtype expression by bladder outlet obstruction. J Urol. 2002;167:1513–21.

    Article  CAS  PubMed  Google Scholar 

  98. Chen Q, Takahashi S, Zhong S, Hosoda C, Zheng HY, Ogushi T, et al. Function of the lower urinary tract in mice lacking alpha1d-adrenoceptor. J Urol. 2005;174:370–4.

    Article  CAS  PubMed  Google Scholar 

  99. Malloy BJ, Price DT, Price RR, Bienstock AM, Dole MK, Funk BL, et al. Alpha1-adrenergic receptor subtypes in human detrusor. J Urol. 1998;160:937–43.

    Article  CAS  PubMed  Google Scholar 

  100. Yono M, Foster HE Jr, Shin D, Takahashi W, Pouresmail M, Latifpour J. Doxazosin-induced up-regulation of alpha 1A-adrenoceptor mRNA in the rat lower urinary tract. Can J Physiol Pharmacol. 2004;82:872–8.

    Article  CAS  PubMed  Google Scholar 

  101. Michel MC, Vrydag W. Alpha1-, alpha2- and beta-adrenoceptors in the urinary bladder, urethra and prostate. Br J Pharmacol. 2006;147:S88–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yalla SV, Rossier AB, Gabilondo FB, Di Benedetto M, Gittes RF. Functional contribution of autonomic innervation to urethral striated sphincter: Studies with parasympathomimetic, parasympatholytic and alpha adrenergic blocking agents in spinal cord injury and control male subjects. J Urol. 1997;117:494.

    Article  Google Scholar 

  103. Awad SA, Downie JW, Kiruluta HG. Alpha-adrenergic agents in urinary disorders of the proximal urethra. Part I. Sphincteric incontinence. Br J Urol. 1978;50:332–5.

    Article  CAS  PubMed  Google Scholar 

  104. Nordling J. Influence of the sympathetic nervous system on lower urinary tract in man. Neurourol Urodynam. 1983;2:3.

    Article  Google Scholar 

  105. Mattiasson A, Andersson KE, Sjögren C. Adrenoceptors and cholinoceptors controlling noradrenaline release from adrenergic nerves in the urethra of rabbit and man. J Urol. 1984;131:1190–5.

    Article  CAS  PubMed  Google Scholar 

  106. Testa R, Guarneri L, Ibba M, Strada G, Poggesi E, Taddei C. Characterization of alpha 1-adrenoceptor subtypes in prostate and prostatic urethra of rat, rabbit, dog and man. Eur J Pharmacol. 1993;249:307–15.

    Article  CAS  PubMed  Google Scholar 

  107. Awad SA, Downie JW, Lywood DW, Young RA, Jarzylo SV. Sympathetic activity in the proximal urethra in patients with urinary obstruction. J Urol. 1976;115:545–7.

    Article  CAS  PubMed  Google Scholar 

  108. Keating GM. Silodosin: a review of its use in the treatment of the signs and symptoms of benign prostatic hyperplasia. Drugs. 2015;75:207–17.

    Article  CAS  PubMed  Google Scholar 

  109. Nishino Y, Masue T, Miwa K, Takahashi Y, Ishihara S, Deguchi T. Comparison of two alpha1-adrenoceptor antagonists, naftopidil and tamsulosin hydrochloride, in the treatment of lower urinary tract symptoms with benign prostatic hyperplasia: a randomized crossover study. BJU Int. 2006;97:747–51.

    Article  CAS  PubMed  Google Scholar 

  110. Schwinn DA, Roehrborn CG. Alpha1-adrenoceptor subtypes and lower urinary tract symptoms. Int J Urol. 2008;15:193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Willette RN, Sauermelch C, Hieble JP. Role of alpha-1 and alpha-2 adrenoceptors in the sympathetic control of the proximal urethra. J Pharmacol Exp Ther. 1990;252:706–10.

    CAS  PubMed  Google Scholar 

  112. de Groat WC, Booth AM, Yoshimural Y. Neurophysiology of micturition and its modification in animal models of human disease. C. A. Maggi. London. Harwood Academic Publishers. 1993;1:227–90.

    Google Scholar 

  113. Andersson KE, Garcia Pascual A, Persson K, Forman A, Tøttrup A. Electrically-induced, nerve-mediated relaxation of rabbit urethra involves nitric oxide. J Urol. 1992;147:253–9.

    Article  CAS  PubMed  Google Scholar 

  114. Andersson KE, Persson K. Nitric oxide synthase and the lower urinary tract: possible implications for physiology and pathophysiology. Scand J Urol Nephrol Suppl. 1995;175:43–53.

    CAS  PubMed  Google Scholar 

  115. Bennett BC, Kruse MN, Roppolo JR, Flood HD, Fraser M, et al. Neural control of urethral outlet activity in vivo: role of nitric oxide. J Urol. 1995;153:2004–9.

    Article  CAS  PubMed  Google Scholar 

  116. Fraser MO, Flood HD. Urethral smooth muscle relaxation is mediated by nitric oxide (NO) released from parasympathetic postganglionic neurons. J Urol. 1995;153:461A.

    Article  Google Scholar 

  117. Vizzard MA, Erdman SL, Förstermann U, de Groat WC. Differential distribution of nitric oxide synthase in neural pathways to urogenital organs (urethra, penis, urinary bladder) of the rat. Brain Res. 1994;646:279–91.

    Article  CAS  PubMed  Google Scholar 

  118. Lies B, Groneberg D, Friebe A. Correlation of cellular expression with function of NO-sensitive guanylyl cyclase in the murine lower urinary tract. J Physiol. 2013;591:5365–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Truss MC, Becker AJ, Ückert S, Schultheiss D, Machtens S, et al. Selective pharmacological manipulation of the smooth muscle tissue of the genitourinary tract: a glimpse into the future. BJU Int. 1999;83(Suppl 2):36–41.

    CAS  PubMed  Google Scholar 

  120. Truss MC, Stief CG, Uckert S, Becker AJ, Wefer J, Schultheiss D, et al. Phosphodiesterase 1 inhibition in the treatment of lower urinary tract dysfunction: from bench to bedside. World J Urol. 2001;19:344–50.

    Article  CAS  PubMed  Google Scholar 

  121. Rice A. Topical spinal administration of a nitric oxide synthase inhibitor prevents the hyperreflexia associated with a rat model of persistent visceral pain. Neurosci Lett. 1995;187:111.

    Article  CAS  PubMed  Google Scholar 

  122. Kakizaki H, de Groat WC. Role of spinal nitric oxide in the facilitation of the micturition reflex by bladder irritation. J Urol. 1996;155:355–60.

    Article  CAS  PubMed  Google Scholar 

  123. Lagos P, Ballejo G. Role of spinal nitric oxide synthase-dependent processes in the initiation of the micturition hyperreflexia associated with cyclophosphamide-induced cystitis. Neuroscience. 2004;125:663–70.

    Article  CAS  PubMed  Google Scholar 

  124. Pandita RK, Persson K, Andersson KE. Capsaicin-induced bladder overactivity and nociceptive behaviour in conscious rats: involvement of spinal nitric oxide. J Auton Nerv Syst. 1997;67:184–91.

    Article  CAS  PubMed  Google Scholar 

  125. Birder LA, Apodaca G, de Groat WC, Kanai AJ. Adrenergic- and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in urinary bladder. Am J Phys. 1998;275:F226–9.

    CAS  Google Scholar 

  126. Vizzard MA, Erdman SL, de Groat WC. Increased expression of neuronal nitric oxide synthase in bladder afferent pathways following chronic bladder irritation. J Comp Neurol. 1996;370:191–202.

    Article  CAS  PubMed  Google Scholar 

  127. Zvara P, Folsom JB, Kliment J Jr, Dattilio AL, Moravcíková A, Plante MK, et al. Increased expression of neuronal nitric oxide synthase in bladder afferent cells in the lumbosacral dorsal root ganglia after chronic bladder outflow obstruction. Brain Res. 2004;1002:35–42.

    Article  CAS  PubMed  Google Scholar 

  128. Ozawa H, Chancellor MB, Jung SY, Yokoyama T, Fraser MO, Yu Y, et al. Effect of intravesical nitric oxide therapy on cyclophosphamide-induced cystitis. J Urol. 1999;162:2211–6.

    Article  CAS  PubMed  Google Scholar 

  129. Pandita RK, Mizusawa HK. Intravesical oxyhemoglobin initiates bladder overactivity in conscious, normal rats. J Urol. 2004;164:545–50.

    Article  Google Scholar 

  130. Masuda H, Kim JH, Kihara K, Chancellor MB, de Groat WC, Yoshimura N. Inhibitory roles of peripheral nitrergic mechanisms in capsaicin-induced detrusor overactivity in the rat. BJU Int. 2007;100:912–8.

    Article  CAS  PubMed  Google Scholar 

  131. Yoshimura N, Seki S, de Groat WC. Nitric oxide modulates Ca(2+) channels in dorsal root ganglion neurons innervating rat urinary bladder. J Neurophysiol. 2001;86:304–11.

    Article  CAS  PubMed  Google Scholar 

  132. Gacci M, Corona G, Salvi M, Vignozzi L, McVary KT, Kaplan SA, et al. A systematic review and meta-analysis on the use of phosphodiesterase 5 inhibitors alone or in combination with alpha-blockers for lower urinary tract symptoms due to benign prostatic hyperplasia. Eur Urol. 2012;61:994–1003.

    Article  CAS  PubMed  Google Scholar 

  133. Cantrell MA, Baye J, Vouri SM. Tadalafil: a phosphodiesterase-5 inhibitor for benign prostatic hyperplasia. Pharmacotherapy. 2013;33:639–49.

    Article  CAS  PubMed  Google Scholar 

  134. Flood HD, Liu JL, Fraser MO, de Groat WC. Sex differences in the nitric oxide (NO)--mediated smooth muscle component and striated muscle component of urethral relaxation in rats. Neurourol Urodyn. 1995;14:517.

    Article  Google Scholar 

  135. Kakizaki H, Fraser MO, de Groat WC. Reflex pathways controlling urethral striated and smooth muscle function in the male rat. Am J Phys. 1997;272:R1647.

    CAS  Google Scholar 

  136. Alexandre EC, de Oliveira MG, Campos R, Kiguti LR, Calmasini FB, Silva FH, et al. How important is the alpha1-adrenoceptor in primate and rodent proximal urethra? Sex differences in the contribution of alpha1-adrenoceptor to urethral contractility. Am J Physiol Renal Physiol. 2017;312:F1026–34.

    Article  CAS  PubMed  Google Scholar 

  137. de Groat WC. Spinal cord projections and neuropeptides in visceral afferent neurons. Prog Brain Res. 1986;67:165–87.

    Article  PubMed  Google Scholar 

  138. de Groat WC. Neuropeptides in pelvic afferent pathways. Experientia. 1989;56:334–61.

    Google Scholar 

  139. Keast JR, de Groat WC. Segmental distribution and peptide content of primary afferent neurons innervating the urogenital organs and colon of male rats. J Comp Neurol. 1992;319:615–23.

    Article  CAS  PubMed  Google Scholar 

  140. Maggi CA. The dual, sensory and efferent function of the capsaicin-sensitive primary sensory nerves in the bladder and urethra. C. A. Maggi. London. Harwood Academic Publishers. 1993;1:383–422.

    Google Scholar 

  141. Vizzard MA. Alterations in neuropeptide expression in lumbosacral bladder pathways following chronic cystitis. J Chem Neuroanat. 2001;21:125–38.

    Article  CAS  PubMed  Google Scholar 

  142. Vizzard MA. Neurochemical plasticity and the role of neurotrophic factors in bladder reflex pathways after spinal cord injury. Prog Brain Res. 2006;152:97–115.

    Article  CAS  PubMed  Google Scholar 

  143. Keast JR, Stephensen TM. Glutamate and aspartate immunoreactivity in dorsal root ganglion cells supplying visceral and somatic targets and evidence for peripheral axonal transport. J Comp Neurol. 2000;424:577–87.

    Article  CAS  PubMed  Google Scholar 

  144. Kawatani M, Rutigliano M, de Groat WC. Vasoactive intestinal polypeptide produces ganglionic depolarization and facilitates muscarinic excitatory mechanisms in a sympathetic ganglion. Science. 1985;229:879–81.

    Article  CAS  PubMed  Google Scholar 

  145. Kawatani M, Nagel J, de Groat WC. Identification of neuropeptides in pelvic and pudendal nerve afferent pathways to the sacral spinal cord of the cat. J Comp Neurol. 1986;249:117–32.

    Article  CAS  PubMed  Google Scholar 

  146. Kawatani M, Suzuki T, de Groat WC. Corticotropin releasign factor-like Immunoreactivity in Afferent projections to the sacral spinal cord of the cat. J Auton Nerv Syst. 1996;61:218–26.

    Article  CAS  PubMed  Google Scholar 

  147. Morrison J, L Birder. Neural control. Incontinence. P. Abrams, C. L., K. S. and A. Wein. Plymouth, Health Publications: 2005;363–422.

    Google Scholar 

  148. Merrill L, Girard B, Arms L, Guertin P, Vizzard MA. Neuropeptide/Receptor expression and plasticity in micturition pathways. Curr Pharm Des. 2013;19:4411–22.

    Article  CAS  PubMed  Google Scholar 

  149. Ishizuka O, Igawa Y, Lecci A, Maggi CA, Mattiasson A, Andersson KE. Role of intrathecal tachykinins for micturition in unanaesthetized rats with and without bladder outlet obstruction. Br J Pharmacol. 1994;113:111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ishizuka O, Alm P, Larsson B, Mattiasson A, Andersson KE. Facilitatory effect of pituitary adenylate cyclase activating polypeptide on micturition in normal, conscious rats. Neuroscience. 1995;66:1009–14.

    Article  CAS  PubMed  Google Scholar 

  151. Khawaja AM, Rogers DF. Tachykinins: receptor to effector. Int J Biochem Cell Biol. 1996;28:721–38.

    Article  CAS  PubMed  Google Scholar 

  152. Lecci A, Maggi CA. Tachykinins as modulators of the micturition reflex in the central and peripheral nervous system. Regul Pept. 2001;101:1–18.

    Article  CAS  PubMed  Google Scholar 

  153. Morrison JF, Sato A, Sato Y, Yamanishi T. The influence of afferent inputs from skin and viscera on the activity of the bladder and the skeletal muscle surrounding the urethra in the rat. Neurosci Res. 1995;23:195–205.

    Article  CAS  PubMed  Google Scholar 

  154. Kamo I, Chancellor MB, de Groat WC, Yoshimura N. Differential effects of activation of peripheral and spinal tachykinin neurokinin(3) receptors on the micturition reflex in rats. J Urol. 2005;174:776–81.

    Article  CAS  PubMed  Google Scholar 

  155. Lecci A, Giuliani S, Garret C, Maggi CA. Evidence for a role of tachykinins as sensory transmitters in the activation of micturition reflex. Neuroscience. 1993;54:827–37.

    Article  CAS  PubMed  Google Scholar 

  156. Yamamoto T, Hanioka N, Maeda Y, Imazumi K, Hamada K, et al. Contribution of tachykinin receptor subtypes to micturition reflex in guinea pigs. Eur J Pharmacol. 2003;477:253–9.

    Article  CAS  PubMed  Google Scholar 

  157. Lecci A, Giuliani S, Santicioli P, Maggi CA. Involvement of spinal tachykinin NK1 and NK2 receptors in detrusor hyperreflexia during chemical cystitis in anaesthetized rats. Eur J Pharmacol. 1994;259:129–35.

    Article  CAS  PubMed  Google Scholar 

  158. Ishizuka O, Mattiasson A, Andersson KE. Effects of neurokinin receptor antagonists on L-dopa induced bladder hyperactivity in normal conscious rats. J Urol. 1995;154:1548–51.

    Article  CAS  PubMed  Google Scholar 

  159. Lecci A, Giuliani S, Tramontana M, Criscuoli M, Maggi CA. MEN 11,420, a peptide tachykinin NK2 receptor antagonist, reduces motor responses induced by the intravesical administration of capsaicin in vivo. Naunyn Schmiedeberg's Arch Pharmacol. 1997;356:182–8.

    Article  CAS  Google Scholar 

  160. Doi T, Kamo I, Imai S, Okanishi S, Ishimaru T, Ikeura Y, et al. Effects of TAK-637, a tachykinin receptor antagonist, on lower urinary tract function in the guinea pig. Eur J Pharmacol. 1999;383:297–303.

    Article  CAS  PubMed  Google Scholar 

  161. Green SA, Alon A, Ianus J, McNaughton KS, Tozzi CA, Reiss TF. Efficacy and safety of a neurokinin-1 receptor antagonist in postmenopausal women with overactive bladder with urge urinary incontinence. J Urol. 2006;176:2535–40; discussion 2540.

    Article  CAS  PubMed  Google Scholar 

  162. Frenkl TL, Zhu H, Reiss T, Seltzer O, Rosenberg E, Green S. A multicenter, double-blind, randomized, placebo controlled trial of a neurokinin-1 receptor antagonist for overactive bladder. J Urol. 2010;184:616–22.

    Article  CAS  PubMed  Google Scholar 

  163. Sculptoreanu A, de Groat WC. Protein kinase C is involved in neurokinin receptor modulation of N- and L-type Ca2+ channels in DRG neurons of the adult rat. J Neurophysiol. 2003;90:21–31.

    Article  CAS  PubMed  Google Scholar 

  164. Sculptoreanu A, Kullmann FA, de Groat WC. Neurokinin 2 receptor-mediated activation of protein kinase C modulates capsaicin responses in DRG neurons from adult rats. Eur J Neurosci. 2008;27:3171–81.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Yoshimura N, de Groat WC. Neural control of the lower urinary tract. Int J Urol. 1997;4:111–25.

    Article  CAS  PubMed  Google Scholar 

  166. Yoshiyama M, de Groat WC. The role of vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide in the neural pathways controlling the lower urinary tract. J Mol Neurosci. 2008;36:227–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. May V, Vizzard MA. Bladder dysfunction and altered somatic sensitivity in PACAP−/− mice. J Urol. 2010;183:772–9.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Yoshiyama M, de Groat WC. Effects of intrathecal administration of pituitary adenylate cyclase activating polypeptide on lower urinary tract functions in rats with intact or transected spinal cords. Exp Neurol. 2008;211:449–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zvarova K, Dunleavy JD, Vizzard MA. Changes in pituitary adenylate cyclase activating polypeptide expression in urinary bladder pathways after spinal cord injury. Exp Neurol. 2005;192:46–59.

    Article  CAS  PubMed  Google Scholar 

  170. Zvara P, Braas KM, May V, Vizzard MA. A role for pituitary adenylate cyclase activating polypeptide (PACAP) in detrusor hyperreflexia after spinal cord injury (SCI). Ann N Y Acad Sci. 2006;1070:622–8.

    Article  CAS  PubMed  Google Scholar 

  171. Braas KM, May V, Zvara P, Nausch B, Kliment J, Dunleavy JD. Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. Am J Physiol Regul Integr Comp Physiol. 2006;290:R951–62.

    Article  CAS  PubMed  Google Scholar 

  172. Miura A, Kawatani M, de Groat WC. Effects of pituitary adenylate cyclase activating polypeptide on lumbosacral preganglionic neurons in the neonatal rat spinal cord. Brain Res. 2001;895:223–32.

    Article  CAS  PubMed  Google Scholar 

  173. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2011;41:661–90.

    Article  Google Scholar 

  174. Breyer MD, Hébert RL, Breyer RM. Prostanoid receptors and the urogenital tract. Curr Opin Investig Drugs. 2003;4:1343–53.

    CAS  PubMed  Google Scholar 

  175. Rahnama'i MS, van Koeveringe GA, Essers PB, de Wachter SG, de Vente J, van Kerrebroeck PE, et al. Prostaglandin receptor EP1 and EP2 site in guinea pig bladder urothelium and lamina propria. J Urol. 2010;183:1241–7.

    Article  PubMed  CAS  Google Scholar 

  176. Beppu MI, Araki I, Yoshiyama M, Du S, Kobayashi H, Zakoji H, et al. Bladder outlet obstruction induced expression of prostaglandin E2 receptor subtype EP4 in the rat bladder: a possible counteractive mechanism against detrusor overactivity. J Urol. 2011;186:2463–9.

    Article  CAS  PubMed  Google Scholar 

  177. Saban R, Undem BJ, Keith IM, Saban MR, Tengowski MW, Graziano FM. Differential release of prostaglandins and leukotrienes by sensitized guinea pig urinary bladder layers upon antigen challenge. J Urol. 1994;152:544–9.

    Article  CAS  PubMed  Google Scholar 

  178. Schroder A, Newgreen D, Andersson KE. Detrusor responses to prostaglandin E2 and bladder outlet obstruction in wild-type and Ep1 receptor knockout mice. J Urol. 2004;172:1166–70.

    Article  PubMed  Google Scholar 

  179. Wang X, Momota Y, Yanase H, Narumiya S, Maruyama T, Kawatani M. Urothelium EP1 receptor facilitates the micturition reflex in mice. Biomed Res. 2008;29:105–11.

    Article  PubMed  Google Scholar 

  180. Chapple CR, Abrams P, Andersson KE, Radziszewski P, Masuda T, Small M, et al. Phase II study on the efficacy and safety of the EP1 receptor antagonist ONO-8539 for nonneurogenic overactive bladder syndrome. J Urol. 2014;191:253–60.

    Article  CAS  PubMed  Google Scholar 

  181. Jones RL, Giembycz MA, Woodward DF. Prostanoid receptor antagonists: development strategies and therapeutic applications. Br J Pharmacol. 2009;158:104–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chuang YC, Yoshimura N, Huang CC, Wu M, Tyagi P, Chancellor MB. Expression of E-series prostaglandin (EP) receptors and urodynamic effects of an EP4 receptor antagonist on cyclophosphamide-induced overactive bladder in rats. BJU Int. 2010;106:1782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bultitude MI, Hills NH, Shuttleworth KE. Clinical and experimental studies on the action of prostaglandins and their synthesis inhibitors on detrusor muscle in vitro and in vivo. Br J Urol. 1976;48:631–7.

    Article  CAS  PubMed  Google Scholar 

  184. Vadyanaathan S, Rao MS, Chary KS, Sharma PL, Das N. Enhancement of detrusor reflex activity by naloxone in patients with chronic neurogenic bladder dysfunction. J Urol. 1981;126:500.

    Article  Google Scholar 

  185. Tammela T, Kontturi M, Käär K, Lukkarinen O. Intravesical prostaglandin F2 for promoting bladder emptying after surgery for female stress incontinence. Br J Urol. 1987;60:43–6.

    Article  CAS  PubMed  Google Scholar 

  186. Delaere KP, Thomas CM, Moonen WA, Debruyne FM. The value of intravesical prostaglandin E2 and F2a in women with abnormalities of bladder emptying. Br J Urol. 1981;53:3069.

    Article  Google Scholar 

  187. Wagner G, Husslein P, Enzelsberger H. Is prostaglandin E2 really of therapeutic value for postoperative urinary retention? Results of a prospectively randomized double-blind study. Am J Obstet Gynecol. 1985;151:375–9.

    Article  CAS  PubMed  Google Scholar 

  188. Schussler B. Comparison of mode of action of prostaglandin E2 and sulprostone, a PGE2 derivative on the lower urinary tract in healthy women. Urol Res. 1990;18:349.

    Article  CAS  PubMed  Google Scholar 

  189. Sekido N, Kida J, Mashimo H, Wakamatsu D, Okada H, Matsuya H. Promising Effects of a Novel EP2 and EP3 Receptor Dual Agonist, ONO-8055, on Neurogenic Underactive Bladder in a Rat Lumbar Canal Stenosis Model. J Urol. 2006;196:609–16.

    Article  CAS  Google Scholar 

  190. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–5.

    Article  CAS  PubMed  Google Scholar 

  191. Masaki T. Historical review: Endothelin. Trends Pharmacol Sci. 2004;25:219–24.

    Article  CAS  PubMed  Google Scholar 

  192. Rubanyi GM, Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev. 1994;46:325–415.

    CAS  PubMed  Google Scholar 

  193. Khan MA, Dashwood MR. Up-regulation of endothelin (ET(A) and ET(B)) receptors and down-regulation of nitric oxide synthase in the detrusor of a rabbit model of partial bladder outlet obstruction. Urol Res. 1999;27(6):445–53.

    Article  CAS  PubMed  Google Scholar 

  194. Arteaga JL, Dashwood MR, Thompson CS, Mumtaz FH, Mikhailidis DP, Morgan RJ. Endothelin ET(B) receptors are involved in the relaxation to the pig urinary bladder neck. Neurourol Urodyn. 2012;31:688–94.

    Article  CAS  PubMed  Google Scholar 

  195. Saenz de Tejada I, Mueller JD, de Las Morenas A, Machado M, Moreland RB, Krane RJ. Endothelin in the urinary bladder. I. Synthesis of endothelin-1 by epithelia, muscle and fibroblasts suggests autocrine and paracrine cellular regulation. J Urol. 1992; 148:1290–8.

    Google Scholar 

  196. Maggi CA, Abelli L, Giuliani S, Somma V, Furio M, Patacchini R. Motor and inflammatory effect of hyperosmolar solutions on the rat urinary bladder in relation to capsaicin-sensitive sensory nerves. Gen Pharmacol. 1990;21:97–103.

    Article  CAS  PubMed  Google Scholar 

  197. Schroder A, Tajimi M, Matsumoto H, Schröder C, Brands M, Andersson KE. Protective effect of an oral endothelin converting enzyme inhibitor on rat detrusor function after outlet obstruction. J Urol. 2004;172:1171–4.

    Article  PubMed  Google Scholar 

  198. Ukai M, Yuyama H, Noguchi Y, Someya A, Okutsu H, Watanabe M, et al. Participation of endogenous endothelin and ETA receptor in premicturition contractions in rats with bladder outlet obstruction. Naunyn Schmiedeberg's Arch Pharmacol. 2006;373:197–203.

    Article  CAS  Google Scholar 

  199. Ogawa T, Kamo I, Pflug BR, Nelson JB, Seki S, Igawa Y. Differential roles of peripheral and spinal endothelin receptors in the micturition reflex in rats. J Urol. 2004;172:1533–7.

    Article  CAS  PubMed  Google Scholar 

  200. Ogawa T, Sasatomi K, Hiragata S, Seki S, Nishizawa O, Chermansky CJ. Therapeutic effects of endothelin-A receptor antagonist on bladder overactivity in rats with chronic spinal cord injury. Urology. 2008;71:341–5.

    Article  PubMed  Google Scholar 

  201. Hanyu S, Iwanaga T, Kano K, Fujita T. Distribution of serotonin-immunoreactive paraneurons in the lower urinary tract of dogs. Am J Anat. 1987;180:349–56.

    Article  CAS  PubMed  Google Scholar 

  202. Kullmann FA Chang HH, Gauthier C, McDonnell BM, Yeh JC, Clayton DR, et al. Serotonergic paraneurons in the female mouse urethral epithelium and their potential role in peripheral sensory information processing. Acta Physiol. 2018;222(2).

    Google Scholar 

  203. Yokoyama T, Saino T, Nakamuta N, Yamamoto Y. Topographic distribution of serotonin-immunoreactive urethral endocrine cells and their relationship with calcitonin gene-related peptide-immunoreactive nerves in male rats. Acta Histochem. 2017;119:78–83.

    Article  CAS  PubMed  Google Scholar 

  204. Klarskov P, Hørby-Petersen J. Influence of serotonin on lower urinary tract smooth muscle in vitro. Br J Urol. 1986;58:507–13.

    Article  CAS  PubMed  Google Scholar 

  205. Candura SM, Messori E, Franceschetti GP, D'Agostino G, Vicini D, Tagliani M. Neural 5-HT4 receptors in the human isolated detrusor muscle: effects of indole, benzimidazolone and substituted benzamide agonists and antagonists. Br J Pharmacol. 1996;118:1965–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Darblade B, Behr-Roussel D, Gorny D, Lebret T, Benoit G, Hieble JP. Piboserod (SB 207266), a selective 5-HT4 receptor antagonist, reduces serotonin potentiation of neurally-mediated contractile responses of human detrusor muscle. World J Urol. 2005;23:147–51.

    Article  CAS  PubMed  Google Scholar 

  207. Palea S, Lluel P, Barras M, Duquenne C, Galzin AM, Arbilla S. Involvement of 5-hydroxytryptamine (HT)7 receptors in the 5-HT excitatory effects on the rat urinary bladder. BJU Int. 2004;94:1125–31.

    Article  CAS  PubMed  Google Scholar 

  208. Sakai T, Kasahara K, Tomita K, Ikegaki I, Kuriyama H. 5-Hydroxytryptamine-induced bladder hyperactivity via the 5-HT2A receptor in partial bladder outlet obstruction in rats. Am J Physiol Renal Physiol. 2013;304:F1020–7.

    Article  CAS  PubMed  Google Scholar 

  209. Michishita M, Yano K, Kasahara K, Tomita K, Matsuzaki O. Increased expression of 5-HT(2A) and 5-HT(2B) receptors in detrusor muscle after partial bladder outlet obstruction in rats. Biomed Res. 2015;36:187–94.

    Article  PubMed  Google Scholar 

  210. Krause JE, Chenard BL, Cortright DN. Transient receptor potential ion channels as targets for the discovery of pain therapeutics. Curr Opin Investig Drugs. 2005;6:48–57.

    CAS  PubMed  Google Scholar 

  211. Clapham DE. Some like it hot: spicing up ion channels. Nature. 1997;389:783–4.

    Article  CAS  PubMed  Google Scholar 

  212. Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci. 2002;5:856–60.

    Article  CAS  PubMed  Google Scholar 

  213. Charrua A, Cruz CD, Cruz F, Avelino A. Transient receptor potential vanilloid subfamily 1 is essential for the generation of noxious bladder input and bladder overactivity in cystitis. J Urol. 2007;177:1537–41.

    Article  CAS  PubMed  Google Scholar 

  214. Wang ZY, Wang P, Merriam FV, Bjorling DE. Lack of TRPV1 inhibits cystitis-induced increased mechanical sensitivity in mice. Pain. 2008;139:158–67.

    Article  CAS  PubMed  Google Scholar 

  215. Brady CM, Apostolidis AN, Harper M, Yiangou Y, Beckett A, Jacques TS. Parallel changes in bladder suburothelial vanilloid receptor TRPV1 and pan-neuronal marker PGP9.5 immunoreactivity in patients with neurogenic detrusor overactivity after intravesical resiniferatoxin treatment. BJU Int. 2004;93:770–6.

    Article  CAS  PubMed  Google Scholar 

  216. Silva C, Ribeiro MJ, Cruz F. The effect of intravesical resiniferatoxin in patients with idiopathic detrusor instability suggests that involuntary detrusor contractions are triggered by C-fiber input. J Urol. 2002;168:575–9.

    Article  CAS  PubMed  Google Scholar 

  217. Lazzeri M, Beneforti P, Benaim G, Maggi CA, Lecci A, Turini D. Intravesical capsaicin for treatment of severe bladder pain: a randomized placebo controlled study. J Urol. 1996;156:947–52.

    Article  CAS  PubMed  Google Scholar 

  218. Lazzeri M, Beneforti P, Spinelli M, Zanollo A, Barbagli G, Turini D. Intravesical resiniferatoxin for the treatment of hypersensitive disorder: a randomized placebo controlled study. J Urol. 2000;164:676–9.

    Article  CAS  PubMed  Google Scholar 

  219. Payne CK, Mosbaugh PG, Forrest JB, Evans RJ, Whitmore KE, Antoci JP. Intravesical resiniferatoxin for the treatment of interstitial cystitis: a randomized, double-blind, placebo controlled trial. J Urol. 2005;173:1590–4.

    Article  CAS  PubMed  Google Scholar 

  220. Charrua A, Cruz CD, Narayanan S, Gharat L, Gullapalli S, Cruz F, et al. GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. J Urol. 2009;181:379–86.

    Article  CAS  PubMed  Google Scholar 

  221. Santos-Silva A, Charrua A, Cruz CD, Gharat L, Avelino A, Cruz F. Rat detrusor overactivity induced by chronic spinalization can be abolished by a transient receptor potential vanilloid 1 (TRPV1) antagonist. Auton Neurosci. 2012;166:35–8.

    Article  CAS  PubMed  Google Scholar 

  222. Kitagawa Y, Wada M, Kanehisa T, Miyai A, Usui K, Maekawa M, et al. JTS-653 blocks afferent nerve firing and attenuates bladder overactivity without affecting normal voiding function. J Urol. 2013;189:1137–46.

    Article  CAS  PubMed  Google Scholar 

  223. Majima T, Funahashi Y, Takai S, Goins WF, Gotoh M, Tyagi P, et al. Herpes Simplex Virus Vector-Mediated Gene Delivery of Poreless TRPV1 Channels Reduces Bladder Overactivity and Nociception in Rats. Hum Gene Ther. 2015;26:734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Stein RJ, Santos S, Nagatomi J, Hayashi Y, Minnery BS, et al. Xavier M. Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J Urol. 2004;172:1175–8.

    Article  CAS  PubMed  Google Scholar 

  225. Mukerji G, Yiangou Y, Grogono J, Underwood J, Agarwal SK, Khullar V, et al. Localization of M2 and M3 muscarinic receptors in human bladder disorders and their clinical correlations. J Urol. 2006;176:367–73.

    Article  CAS  PubMed  Google Scholar 

  226. Tsukimi Y, Mizuyachi K, Yamasaki T, Niki T, Hayashi F. Cold response of the bladder in guinea pig: involvement of transient receptor potential channel, TRPM8. Urology. 2005;65(2):406–10.

    Article  PubMed  Google Scholar 

  227. Lashinger ES, Steiginga MS, Hieble JP, Leon LA, Gardner SD, Nagilla R, et al. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am J Physiol Renal Physiol. 2008;295(3):F803–10.

    Article  CAS  PubMed  Google Scholar 

  228. Ito H, Aizawa N, Sugiyama R, Watanabe S, Takahashi N, Tajimi M, et al. Functional role of the transient receptor potential melastatin 8 (TRPM8) ion channel in the urinary bladder assessed by conscious cystometry and ex vivo measurements of single-unit mechanosensitive bladder afferent activities in the rat. BJU Int. 2016;117:484–94.

    Article  CAS  PubMed  Google Scholar 

  229. Mistretta FA, Russo A, Castiglione F, Bettiga A, Colciago G, Montorsi F, et al. DFL23448, A Novel Transient Receptor Potential Melastin 8-Selective Ion Channel Antagonist, Modifies Bladder Function and Reduces Bladder Overactivity in Awake Rats. J Pharmacol Exp Ther. 2016;356:200–11.

    Article  CAS  PubMed  Google Scholar 

  230. Hayashi T, Kondo T, Ishimatsu M, Takeya M, Igata S, Nakamura K, et al. Function and expression pattern of TRPM8 in bladder afferent neurons associated with bladder outlet obstruction in rats. Auton Neurosci. 2011;164:27–33.

    Article  CAS  PubMed  Google Scholar 

  231. Lei Z, Ishizuka O, Imamura T, Noguchi W, Yamagishi T, Yokoyama H, et al. Functional roles of transient receptor potential melastatin 8 (TRPM8) channels in the cold stress-induced detrusor overactivity pathways in conscious rats. Neurourol Urodyn. 2013;32:500–4.

    Article  CAS  PubMed  Google Scholar 

  232. Fajardo O, Meseguer V. TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. J Neurosci. 2008;28:7863–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Caspani O, Heppenstall PA. TRPA1 and cold transduction: an unresolved issue? J Gen Physiol. 2009;133:245–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Nagata K, Duggan A, Kumar G, García-Añoveros J, et al. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci. 2005;25:4052–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Du S, Araki I, Mikami Y, Zakoji H, Beppu M, Yoshiyama M, et al. Amiloride-sensitive ion channels in urinary bladder epithelium involved in mechanosensory transduction by modulating stretch-evoked adenosine triphosphate release. Urology. 2007;69:590–5.

    Article  PubMed  Google Scholar 

  236. Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S, et al. Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol. 2008;53:391–9.

    Article  CAS  PubMed  Google Scholar 

  237. Minagawa T, Aizawa N, Igawa Y, Wyndaele JJ. The role of transient receptor potential ankyrin 1 (TRPA1) channel in activation of single unit mechanosensitive bladder afferent activities in the rat. Neurourol Urodyn. 2014;33:544–9.

    Article  CAS  PubMed  Google Scholar 

  238. Andrade EL, Forner S, Bento AF, Leite DF, Dias MA, Leal PC, et al. TRPA1 receptor modulation attenuates bladder overactivity induced by spinal cord injury. Am J Physiol Renal Physiol. 2011;300:F1223–34.

    Article  CAS  PubMed  Google Scholar 

  239. Birder LA. TRPs in bladder diseases. Biochim Biophys Acta. 1772;2007:879–84.

    Google Scholar 

  240. Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K, et al. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest. 2007;117:3453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Thorneloe KS, AC Sulpizio. N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1 -piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J Pharmacol Exp Ther 2008; 326:432–42.

    Google Scholar 

  242. Xu X, Gordon E, Lin Z, Lozinskaya IM, Chen Y, Thorneloe KS, et al. Functional TRPV4 channels and an absence of capsaicin-evoked currents in freshly-isolated, guinea-pig urothelial cells. Channels (Austin). 2009; 3.

    Google Scholar 

  243. Yamada T, Ugawa S, Ueda T, Ishida Y, Kajita K, Shimada S, et al. Ugawa. Differential localizations of the transient receptor potential channels TRPV4 and TRPV1 in the mouse urinary bladder. J Histochem Cytochem. 2009;57:277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K, et al. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem. 2009;

    Google Scholar 

  245. Aizawa N, Wyndaele JJ, Homma Y, Igawa Y, et al. Effects of TRPV4 cation channel activation on the primary bladder afferent activities of the rat. Neurourol Urodyn. 2012;31:148–55.

    Article  CAS  PubMed  Google Scholar 

  246. Merrill L, Vizzard MA. Intravesical TRPV4 blockade reduces repeated variate stress-induced bladder dysfunction by increasing bladder capacity and decreasing voiding frequency in male rats. Am J Physiol Regul Integr Comp Physiol. 2014;307:471–80.

    Article  CAS  Google Scholar 

  247. Yoshiyama M, Mochizuki T, Nakagomi H, Miyamoto T, Kira S, Mizumachi R, et al. Functional roles of TRPV1 and TRPV4 in control of lower urinary tract activity: dual analysis of behavior and reflex during the micturition cycle. Am J Physiol Renal Physiol. 2015;308:F1128–34.

    Article  CAS  PubMed  Google Scholar 

  248. Isogai A, Lee K, Mitsui R, Hashitani H, et al. Functional coupling of TRPV4 channels and BK channels in regulating spontaneous contractions of the guinea pig urinary bladder. Pflugers Arch. 2016;468:1573–85.

    Article  CAS  PubMed  Google Scholar 

  249. Adams IB, Martin BR. Cannabis: pharmacology and toxicology in animals and humans. Addiction. 1996;91:1585–614.

    Article  CAS  PubMed  Google Scholar 

  250. Ross SA, ElSohly MA, Sultana GN, Mehmedic Z, Hossain CF, Chandra S, et al. Flavonoid glycosides and cannabinoids from the pollen of Cannabis sativa L. Phytochem Anal. 2005;16:45–8.

    Article  CAS  PubMed  Google Scholar 

  251. Hedlund P. Cannabinoids and the endocannabinoid system in lower urinary tract function and dysfunction. Neurourol Urodyn. 2014;33:46–53.

    Article  CAS  PubMed  Google Scholar 

  252. Fu W, Taylor BK. Activation of cannabinoid CB2 receptors reduces hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Neurosci Lett. 2015;595:1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Jones MR, Wang ZY, Bjorling DE. Intrathecal cannabinoid-1 receptor agonist prevents referred hyperalgesia in acute acrolein-induced cystitis in rats. Am J Clin Exp Urol. 2015;3:28–35.

    PubMed  PubMed Central  Google Scholar 

  254. Wang ZY, Wang P, Bjorling DE, et al. Treatment with a cannabinoid receptor 2 agonist decreases severity of established cystitis. J Urol. 2014;191:1153–8.

    Article  CAS  PubMed  Google Scholar 

  255. Hedlund P, Gratzke C. The endocannabinoid system - a target for the treatment of LUTS? Nat Rev Urol. 2016;13:463–70.

    Article  CAS  PubMed  Google Scholar 

  256. Gandaglia G, Strittmatter F. The fatty acid amide hydrolase inhibitor oleoyl ethyl amide counteracts bladder overactivity in female rats. Neurourol Urodyn. 2013;33:1251–8.

    Article  PubMed  CAS  Google Scholar 

  257. Merriam FV, Wang ZY, Hillard CJ, Stuhr KL, Bjorling DE, et al. Inhibition of fatty acid amide hydrolase suppresses referred hyperalgesia induced by bladder inflammation. BJU Int. 2010;108:1145–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Smith CP, Chancellor MB. Emerging role of botulinum toxin in the management of voiding dysfunction. J Urol. 2004;171:2128–37.

    Article  CAS  PubMed  Google Scholar 

  259. Apostolidis A, Fowler CJ. The use of botulinum neurotoxin type A (BoNTA) in urology. J Neural Transm. 2008;115:593–605.

    Article  CAS  PubMed  Google Scholar 

  260. Apostolidis A, Rahnama'i MS, Fry C, Dmochowski R, Sahai A, et al. Do we understand how botulinum toxin works and have we optimized the way it is administered to the bladder? ICI-RS 2014. Neurourol Urodyn. 2016;35:293–8.

    Article  CAS  PubMed  Google Scholar 

  261. Tyagi P, Kashyap M, Yoshimura N, Chancellor M, Chermansky CJ. Past, Present and Future of Chemodenervation with Botulinum Toxin in the Treatment of Overactive Bladder. J Urol. 2016;197:982–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. DasGupta BR. Structures of botulinum neurotoxin, its functional domains, and perspectives on the crystalline type A toxin. Therapy with Botulinum Toxin. J. Jankovic and M. Hallet. New York, Marcel Dekker: 1994; 15–39.

    Google Scholar 

  263. Schiavo G. O Rossetto. Botulinum neurotoxins are zinc proteins. J Biol Chem. 1992;267:23479–83.

    CAS  PubMed  Google Scholar 

  264. Schiavo G, Santucci A, Dasgupta BR, Mehta PP, Jontes J, Benfenati F, et al. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 1993;335:99–103.

    Article  CAS  PubMed  Google Scholar 

  265. Dykstra DD, Sidi AA. Effects of botulinum A toxin on detrusor-sphincter dyssynergia in spinal cord injury patients. J Urol. 1988;139:919–22.

    Article  CAS  PubMed  Google Scholar 

  266. Dykstra DD, Sidi AA. Treatment of detrusor-sphincter dyssynergia with botulinum A toxin: a double-blind study. Arch Phys Med Rehabil. 1990;71:24–6.

    CAS  PubMed  Google Scholar 

  267. Schurch B, Hauri D, Rodic B, Curt A, Meyer M, Rossier AB, et al. Botulinum-A toxin as a treatment of detrusor-sphincter dyssynergia: a prospective study in 24 spinal cord injury patients. J Urol. 1996;155:1023–9.

    Article  CAS  PubMed  Google Scholar 

  268. Petit H, Wiart L. Botulinum A toxin treatment for detrusor-sphincter dyssynergia in spinal cord disease. Spinal Cord. 1998;36:91–4.

    Article  CAS  PubMed  Google Scholar 

  269. Schurch B, Stöhrer M, Kramer G, Schmid DM, Gaul G. Hauri D. Botulinum-A toxin for treating detrusor hyperreflexia in spinal cord injured patients: a new alternative to anticholinergic drugs? Preliminary results J Urol 2000; 164:692–697.

    Google Scholar 

  270. Apostolidis A, Dasgupta P, Denys P, Elneil S, Fowler CJ, Giannantoni A, Karsenty G, Schulte-Baukloh H, Schurch B, Wyndaele JJ; European Consensus Panel. Recommendations on the use of botulinum toxin in the treatment of lower urinary tract disorders and pelvic floor dysfunctions: a European Consensus report. Eur Urol. 2008.

    Google Scholar 

  271. Apostolidis A, Popat R, Yiangou Y, Cockayne D, Ford AP, Davis JB, et al. Popat. Decreased sensory receptors P2X3 and TRPV1 in suburothelial nerve fibers following intradetrusor injections of botulinum toxin for human detrusor overactivity. J Urol. 2005;174:977–82; discussion 982–3.

    Article  CAS  PubMed  Google Scholar 

  272. Chuang YC, Yoshimura N, Huang CC, Chiang PH, Chancellor MB. Intravesical botulinum toxin a administration produces analgesia against acetic acid induced bladder pain responses in rats. J Urol. 2004;172:1529–32.

    Article  CAS  PubMed  Google Scholar 

  273. Dressler D, Saberi FA, Barbosa ER. Botulinum toxin: mechanisms of action. Arq Neuropsiquiatr. 2005;63:180–5.

    Article  PubMed  Google Scholar 

  274. Takahashi R. T Yunoki. Differential effects of botulinum neurotoxin A on bladder contractile responses to activation of efferent nerves, smooth muscles and afferent nerves in rats. J Urol. 2012;188:1993–9.

    Article  CAS  PubMed  Google Scholar 

  275. Howles S, Curry J, McKay I, Reynard J, Brading AF, Apostolidis A. Lack of effectiveness of botulinum neurotoxin A on isolated detrusor strips and whole bladders from mice and guinea-pigs in vitro. BJU Int. 2009;104:1524–9.

    Article  CAS  PubMed  Google Scholar 

  276. Khera M, Somogyi GT, Kiss S, Boone TB, Smith CP. Botulinum toxin A inhibits ATP release from bladder urothelium after chronic spinal cord injury. Neurochem Int. 2004;45:987–93.

    Article  CAS  PubMed  Google Scholar 

  277. Smith CP, Vemulakonda VM, Kiss S, Boone TB, Somogyi GT. Enhanced ATP release from rat bladder urothelium during chronic bladder inflammation: effect of botulinum toxin A. Neurochem Int. 2005;47:291–7.

    Article  CAS  PubMed  Google Scholar 

  278. Smith CP, Gangitano DA, Munoz A, Salas NA, Boone TB, Aoki KR, et al. Botulinum toxin type A normalizes alterations in urothelial ATP and NO release induced by chronic spinal cord injury. Neurochem Int. 2008;52:1068–75.

    Article  CAS  PubMed  Google Scholar 

  279. Hanna-Mitchell AT. AS Wolf-Johnston. Effect of botulinum toxin A on urothelial-release of ATP and expression of SNARE targets within the urothelium. Neurourol Urodyn. 2013;34:79–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Smith CP, Franks ME. Effect of botulinum toxin A on the autonomic nervous system of the rat lower urinary tract. J Urol. 2003;169:1896–900.

    Article  CAS  PubMed  Google Scholar 

  281. Smith CP. J Nishiguchi. Single-institution experience in 110 patients with botulinum toxin A injection into bladder or urethra. Urology. 2005;65:37–41.

    Article  PubMed  Google Scholar 

  282. Yoshiyama M, Roppolo JR. Effects of LY215490, a competitive AMPA receptor antagonist, on the micturition reflex in the rat. J Pharmacol Exp Ther. 1997;280:894–904.

    CAS  PubMed  Google Scholar 

  283. Yoshiyama M, de Groat WC. Supraspinal and spinal alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and N-methyl-D-aspartate glutamatergic control of the micturition reflex in the urethane-anesthetized rat. Neuroscience. 2005;132:1017–26.

    Article  CAS  PubMed  Google Scholar 

  284. Matsumoto G, Hisamitsu T, de Groat WC. Role of glutamate and NMDA receptors in the descending limb of the spinobulbospinal micturition reflex pathway of the rat. Neurosci Lett. 1995;183:58–61.

    Article  CAS  PubMed  Google Scholar 

  285. Yoshiyama M, Roppolo JR, de Groat WC. Alterations by urethane of glutamatergic control of micturition. Eur J Pharmacol. 1994;264:417–25.

    Article  CAS  PubMed  Google Scholar 

  286. Shibata T, Watanabe M, Ichikawa R, Inoue Y, Koyanagi T. Different expressions of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptor subunit mRNAs between visceromotor and somatomotor neurons of the rat lumbosacral spinal cord. J Comp Neurol. 1999;404:172–82.

    Article  CAS  PubMed  Google Scholar 

  287. Birder LA, de Groat WC. The effect of glutamate antagonists on c-fos expression induced in spinal neurons by irritation of the lower urinary tract. Brain Res. 1992;580:115–20.

    Article  CAS  PubMed  Google Scholar 

  288. Kakizaki H, Yoshiyama M. C-fos expression in spinal neurons after irritation of the lower urinary tract depends on synergistic interactions between NMDA amd AMPA glutamatergic transmission. Am J Physiol. 1996;76:215–26.

    Google Scholar 

  289. Kakizaki H, Yoshiyama M, Roppolo JR, Booth AM, De Groat WC. Role of spinal glutamatergic transmission in the ascending limb of the micturition reflex pathway in the rat. J Pharmacol Exp Ther. 1998;285:22–7.

    CAS  PubMed  Google Scholar 

  290. Kawamorita N, Kaiho Y, Miyazato M, Arai Y, Yoshimura N. Roles of the spinal glutamatergic pathway activated through alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors and its interactions with spinal noradrenergic and serotonergic pathways in the rat urethral continence mechanisms. Neurourol Urodyn. 2014;34:475–81.

    Article  PubMed  CAS  Google Scholar 

  291. Tanaka H, Kakizaki H, Shibata T, Ameda K, Koyanagi T. Effects of a selective metabotropic glutamate receptor agonist on the micturition reflex pathway in urethane-anesthetized rats. Neurourol Urodyn. 2003;22:611–6.

    Article  CAS  PubMed  Google Scholar 

  292. Yoshiyama M, de Groat WC. Role of spinal metabotropic glutamate receptors in regulation of lower urinary tract function in the decerebrate unanesthetized rat. Neurosci Lett. 2007;420:18–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Honda M, Yoshimura N, Hikita K, Hinata N, Muraoka K, Saito M, et al. Supraspinal and spinal effects of L-trans-PDC, an inhibitor of glutamate transporter, on the micturition reflex in rats. Neurourol Urodyn. 2012;32:1026–30.

    Article  PubMed  CAS  Google Scholar 

  294. Igawa Y, Mattiasson A, Andersson KE. Effects of GABA-receptor stimulation and blockade on micturition in normal rats and rats with bladder outflow obstruction. J Urol. 1993;150:537–42.

    Article  CAS  PubMed  Google Scholar 

  295. Pehrson R, Lehmann A, Andersson KE, et al. Effects of gamma-aminobutyrate B receptor modulation on normal micturition and oxyhemoglobin induced detrusor overactivity in female rats. J Urol. 2002;168:2700–5.

    Article  CAS  PubMed  Google Scholar 

  296. Miyazato M, Kaiho Y. Effects of duloxetine, norepinephrine and serotonin reuptake inhibitor, on the sneeze-induced urethral continence reflex in rats. BJU Int. 2007;26:700–1.

    Google Scholar 

  297. Pehrson R, Andersson KE. Effects of tiagabine, a gamma-aminobutyric acid re-uptake inhibitor, on normal rat bladder function. J Urol. 2002;167:2241–6.

    Article  CAS  PubMed  Google Scholar 

  298. Bushman W, Steers WD, Meythaler JM. Voiding dysfunction in patients with spastic paraplegia: urodynamic evaluation and response to continuous intrathecal baclofen. Neurourol Urodyn. 1993;12:163–70.

    Article  CAS  PubMed  Google Scholar 

  299. Lecci A, Giuliani S, Santicioli P, Maggi CA. Involvement of 5-hydroxytryptamine1A receptors in the modulation of micturition reflexes in the anesthetized rat. J Pharmacol Exp Ther. 1992;262:181–9.

    CAS  PubMed  Google Scholar 

  300. de Groat WC, Theobald RJ. Reflex activation of sympathetic pathways to vesical smooth muscle and parasympathetic ganglia by electrical stimulation of vesical afferents. J Physiol Lond. 1976;259:223–37.

    Article  PubMed  PubMed Central  Google Scholar 

  301. Miyazato M, Sugaya K, Nishijima S, Ashitomi K, Hatano T, Ogawa Y. Inhibitory effect of intrathecal glycine on the micturition reflex in normal and spinal cord injury rats. Exp Neurol. 2003;183:232–40.

    Article  CAS  PubMed  Google Scholar 

  302. Shefchyk SJ. Sacral spinal interneurones and the control of urinary bladder and urethral striated sphincter muscle function. J Physiol. 2001;533:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Araki I. Inhibitory postsynaptic currents and the effects of GABA on visually identified sacral parasympathetic preganglionic neurons in neonatal rats. J Neurophysiol. 1994;72:2903–10.

    Article  CAS  PubMed  Google Scholar 

  304. Miyazato M, Sugaya K, Nishijima S, Ashitomi K, Morozumi M, Ogawa Y. Dietary glycine inhibits bladder activity in normal rats and rats with spinal cord injury. J Urol. 2005;173:314–7.

    Article  CAS  PubMed  Google Scholar 

  305. Miyazato M, Sasatomi K, Hiragata S, Sugaya K, Chancellor MB, de Groat WC, et al. Suppression of detrusor-sphincter dysynergia by GABA-receptor activation in the lumbosacral spinal cord in spinal cord-injured rats. Am J Physiol Regul Integr Comp Physiol. 2008;295:336–42.

    Article  CAS  Google Scholar 

  306. Miyazato M, Sasatomi K, Hiragata S, Sugaya K, Chancellor MB, de Groat WC, et al. GABA receptor activation in the lumbosacral spinal cord decreases detrusor overactivity in spinal cord injured rats. J Urol. 2008;179:1178–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Zafra F, Aragon C. Glycine transporters are differentially expressed among CNS cells. J Neurosci. 1995;15:3952–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Zafra F, Gomeza J, Olivares L, Aragón C, Giménez C. Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS. Eur J Neurosci. 1995;7:1342–52.

    Article  CAS  PubMed  Google Scholar 

  309. Yoshikawa S, Oguchi T, Funahashi Y, de Groat WC, Yoshimura N. Glycine transporter type 2 (GlyT2) inhibitor ameliorates bladder overactivity and nociceptive behavior in rats. Eur Urol. 2012;62:704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Yoshimura N, Sasa M. Contraction of urinary bladder by central norepinephrine originating in the locus coeruleus. J Urol. 1988;139:423–7.

    Article  CAS  PubMed  Google Scholar 

  311. Yoshimura N, Sasa M. a1-Adrenergic receptor-mediated excitation from the locus coeruleus of the sacral parasympathetic preganglionic neuron. Life Sci. 1990;47:789–97.

    Article  CAS  PubMed  Google Scholar 

  312. Yoshimura N, Sasa M, Yoshida O, Takaori S. Mediation of micturition reflex by central norepinephrine from the locus coeruleus in the cat. J Urol. 1990;143:840–3.

    Article  CAS  PubMed  Google Scholar 

  313. Espey MJ, Downie JW, Fine A. Effect of 5-HT receptor and adrenoceptor antagonists on micturition in conscious cats. Eur J Pharmacol. 1992;221:167–70.

    Article  CAS  PubMed  Google Scholar 

  314. Ishizuka O, Mattiasson A, Andersson KE. Role of spinal and peripheral alpha 2 adrenoceptors in micturition in normal conscious rats. J Urol. 1996;156:1853–7.

    Article  CAS  PubMed  Google Scholar 

  315. Ishizuka O, Mattiasson A, Steers WD, Andersson KE. Effects of spinal alpha 1-adrenoceptor antagonism on bladder activity induced by apomorphine in conscious rats with and without bladder outlet obstruction. Neurourol Urodyn. 1997;16:191–200.

    Article  CAS  PubMed  Google Scholar 

  316. de Groat WC, Yoshiyama M, Ramage AG, Yamamoto T, Somogyi GT. Modulation of voiding and storage reflexes by activation of alpha1-adrenoceptors. Eur Urol. 1999;36(Suppl 1):68–73.

    Article  PubMed  Google Scholar 

  317. Sugaya K, Nishijima S, Miyazato M, Ashitomi K, Hatano T, Ogawa Y. Effects of intrathecal injection of tamsulosin and naftopidil, alpha-1A and -1D adrenergic receptor antagonists, on bladder activity in rats. Neurosci Lett. 2002;328:74–6.

    Article  CAS  PubMed  Google Scholar 

  318. Kadekawa K, Sugaya K, Nishijima S, Ashitomi K, Miyazato M, Ueda T, et al. Effect of naftopidil, an alpha1D/A-adrenoceptor antagonist, on the urinary bladder in rats with spinal cord injury. Life Sci. 2013;92:1024–8.

    Article  CAS  PubMed  Google Scholar 

  319. Yokoyama O, Ito H, Aoki Y, Oyama N, Miwa Y, Akino H. Selective alpha1A-blocker improves bladder storage function in rats via suppression of C-fiber afferent activity. World J Urol. 2009;28:609–14.

    Article  PubMed  CAS  Google Scholar 

  320. Kontani H, Maruyama I, Sakai T. Involvement of alpha 2-adrenoceptors in the sacral micturition reflex in rats. Jpn J Pharmacol. 1992;60:363–8.

    Article  CAS  PubMed  Google Scholar 

  321. Denys P, Chartier-Kastler E, Azouvi P, Remy-Neris O, Bussel B. Intrathecal clonide for refractory detrusor hyperreflexia in spinal cord injured patients: A preliminary report. J Urol. 1998;160:2137.

    Article  CAS  PubMed  Google Scholar 

  322. Galeano C, Jubelin B. Micturition reflexes in chronic spinalized cats: The underactive detrusor and detrusor-sphincter dyssynergia. Neurourol Urodyn. 1986;5:45–63.

    Article  Google Scholar 

  323. Page ME, Valentino RJ. Locus coeruleus activation by physiological challenges. Brain Res Bull. 1994;35:557–60.

    Article  CAS  PubMed  Google Scholar 

  324. Rouzade-Dominguez ML, Curtis AL, Valentino RJ. Role of Barrington's nucleus in the activation of rat locus coeruleus neurons by colonic distension. Brain Res. 2001;917:206–18.

    Article  CAS  PubMed  Google Scholar 

  325. Koyama Y, Imada N, Kayama Y, Kawauchi A, Watanabe H. How does the distention of urinary bladder cause arousal? Psychiatry Clin Neurosci. 1998;52:142–5.

    Article  CAS  PubMed  Google Scholar 

  326. Valentino RJ, Chen S, Zhu Y, Aston-Jones G. Evidence for divergent projections to the brain noradrenergic system and the spinal parasympathetic system from Barrington's nucleus. Brain Res. 1996;732:1–15.

    Article  CAS  PubMed  Google Scholar 

  327. Danuser H, Thor KB. Inhibition of central sympathetic and somatic outflow to the lower urinary tract of the cat by the alpha 1 adrenergic receptor antagonist prazosin. J Urol. 1995;153:1308–12.

    Article  CAS  PubMed  Google Scholar 

  328. de Groat WC, Yoshimura N. Pharmacology of the lower urinary tract. Annu Rev Pharmacol Toxicol. 2001;41:691–721.

    Article  PubMed  Google Scholar 

  329. Ramage AG, Wyllie MG. A comparison of the effects of doxazosin and terazosin on the spontaneous sympathetic drive to the bladder and related organs in anaesthetized cats. Eur J Pharmacol. 1995;294:645–50.

    Article  CAS  PubMed  Google Scholar 

  330. Gajewski J, Downie JW, Awad SA. Experimental evidence for a central nervous system site of action in the effect of alpha-adrenergic blockers on the external urinary sphincter. J Urol. 1984;132:403–9.

    Article  CAS  PubMed  Google Scholar 

  331. Yashiro K, Thor KB, Burgard EC. Properties of urethral rhabdosphincter motoneurons and their regulation by noradrenaline. J Physiol. 2010;588:4951–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Downie JW, Bialik GJ. Evidence for a spinal site of action of clonidine on somatic and viscerosomatic reflex activity evoked on the pudendal nerve in cats. J Pharmacol Exp Ther. 1988;246:352–8.

    CAS  PubMed  Google Scholar 

  333. Thor KB, Donatucci C. Central nervous system control of the lower urinary tract: new pharmacological approaches to stress urinary incontinence in women. J Urol. 2004;172:27–33.

    Article  CAS  PubMed  Google Scholar 

  334. Kaiho Y, Kamo I, Chancellor MB, Arai Y, de Groat WC, Yoshimura N, et al. Role of noradrenergic pathways in sneeze-induced urethral continence reflex in rats. Am J Physiol Renal Physiol. 2007;292:639–46.

    Article  CAS  Google Scholar 

  335. Miyazato M, Kaiho Y. Effect of duloxetine, a norepinephrine and serotonin reuptake inhibitor, on sneeze-induced urethral continence reflex in rats. Am J Physiol Renal Physiol. 2008;295:F264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Furuta A, Asano K, Egawa S, de Groat WC, Chancellor MB, Yoshimura N, et al. Role of alpha2-adrenoceptors and glutamate mechanisms in the external urethral sphincter continence reflex in rats. J Urol. 2009;181:1467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Kitta T, Miyazato M, Chancellor MB, de Groat WC, Nonomura K, Yoshimura N, et al. Alpha2-adrenoceptor blockade potentiates the effect of duloxetine on sneeze induced urethral continence reflex in rats. J Urol. 2010;184:762–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. McMahon SB, Spillane K. Brain stem influences on the parasympathetic supply to the urinary bladder of the cat. Brain Res. 1982;234:237–49.

    Article  CAS  PubMed  Google Scholar 

  339. Chen SY, Wang SD, Cheng CL, Kuo JS, De Groat WC, Chai CY. Glutamate activation of neurons in CV-reactive areas of cat brain stem affects urinary bladder motility. Am J Physiol. 1993;265:F520–9.

    CAS  PubMed  Google Scholar 

  340. De Groat WC, Roppolo JR. Neural control of the urinary bladder and colon. In Y Taché, D Wingate and T Burks, Editors. Boca Raton, FL.: CRC Press, 1993; 167–190.

    Google Scholar 

  341. Ito T, Sakakibara R, Nakazawa K, Uchiyama T, Yamamoto T, Liu Z, et al. Effects of electrical stimulation of the raphe area on the micturition reflex in cats. Neuroscience. 2006;142:1273–80.

    Article  CAS  PubMed  Google Scholar 

  342. Fukuda H, Koga T. Midbrain stimulation inhibits the micturition, defecation and rhythmic straining reflexes elicited by activation of sacral vesical and rectal afferents in the dog. Exp Brain Res. 1991;83:303–16.

    Article  CAS  PubMed  Google Scholar 

  343. Steers WD, de Groat WC. Effects of m-chlorophenylpiperazine on penile and bladder function in rats. Am J Physiol. 1989;257:R1441–9.

    CAS  PubMed  Google Scholar 

  344. Guarneri L, Ibba M. The effect of mCPP on bladder voiding contractions in rats are mediated by the 5HT2A/5-HT2C receptors. Neurourol Urodyn. 1996;15:316.

    Google Scholar 

  345. Espey MJ, Du HJ, Downie JW. Serotonergic modulation of spinal ascending activity and sacral reflex activity evoked by pelvic nerve stimulation in cats. Brain Res. 1998;798:101–8.

    Article  CAS  PubMed  Google Scholar 

  346. Thor KB, Katofiasc MA, Danuser H, Springer J, Schaus JM. The role of 5-HT(1A) receptors in control of lower urinary tract function in cats. Brain Res. 2002;946:290–7.

    Article  CAS  PubMed  Google Scholar 

  347. Gu B, Olejar KJ, Reiter JP, Thor KB, Dolber PC. Inhibition of bladder activity by 5-hydroxytryptamine1 serotonin receptor agonists in cats with chronic spinal cord injury. J Pharmacol Exp Ther. 2004;310:1266–72.

    Article  CAS  PubMed  Google Scholar 

  348. Testa R, Guarneri L, Poggesi E, Angelico P, Velasco C, Ibba M. Effect of several 5-hydroxytryptamine(1A) receptor ligands on the micturition reflex in rats: comparison with WAY 100635. J Pharmacol Exp Ther. 1999;290:1258–69.

    CAS  PubMed  Google Scholar 

  349. Pehrson R, Ojteg G, Ishizuka O, Andersson KE. Effects of NAD-299, a new, highly selective 5-HT1A receptor antagonist, on bladder function in rats. Naunyn Schmiedeberg's Arch Pharmacol. 2002;366:528–36.

    Article  CAS  Google Scholar 

  350. Kakizaki H, Yoshiyama M, Koyanagi T, De Groat WC. Effects of WAY100635, a selective 5-HT1A-receptor antagonist on the micturition-reflex pathway in the rat. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1407–13.

    Article  CAS  PubMed  Google Scholar 

  351. de Groat WC. Influence of central serotonergic mechanisms on lower urinary tract function. Urology. 2002;59:30–6.

    Article  PubMed  Google Scholar 

  352. de Groat WC. Integrative control of the lower urinary tract: preclinical perspective. Br J Pharmacol. 2006;147(Suppl 2):S25–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  353. de Groat WC, AM Booth. Neural control of the urinary bladder and large intestine. C. M. Brooks, K. Koizumi and A. Sato. Tokyo, Tokyo Univ. 1979; Press: 50–67.

    Google Scholar 

  354. Danuser H, Thor KB. Spinal 5-HT2 receptor-mediated facilitation of pudendal nerve reflexes in the anaesthetized cat. Br J Pharmacol. 1996;118:150–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Miyazato M, Kaiho Y, Kamo I, Kitta T, Chancellor MB, Sugaya K, et al. Role of spinal serotonergic pathways in sneeze-induced urethral continence reflex in rats. Am J Physiol Renal Physiol. 2009;297(4):F1024–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Thor KB, Katofiasc MA. Effects of duloxetine, a combined serotonin and norepinephrine reuptake inhibitor, on central neural control of lower urinary tract function in the chloralose-anesthetized female cat. J Pharmacol Exp Ther. 1995;274:1014–24.

    CAS  PubMed  Google Scholar 

  357. Cannon TW, Yoshimura N, Chancellor MB. Innovations in pharmacotherapy for stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct. 2003;14:367–72.

    Article  PubMed  Google Scholar 

  358. Castro-Diaz D, Amoros MA. Pharmacotherapy for stress urinary incontinence. Curr Opin Urol. 2005;15:227–30.

    Article  PubMed  Google Scholar 

  359. Ishiura Y, Yoshiyama M, Yokoyama O, Namiki M, de Groat WC. Central muscarinic mechanisms regulating voiding in rats. J Pharmacol Exp Ther. 2001;297:933–9.

    CAS  PubMed  Google Scholar 

  360. Masuda H, Chancellor MB, Kihara K, Sakai Y, Koga F, Azuma H, et al. Effects of cholinesterase inhibition in supraspinal and spinal neural pathways on the micturition reflex in rats. BJU Int. 2009;104:1163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Masuda H, Ichiyanagi N, Yokoyama M, Sakai Y, Kihara K, Chancellor MB, et al. Muscarinic receptor activation in the lumbosacral spinal cord ameliorates bladder irritation in rat cystitis models. BJU Int. 2009;104:1531–7.

    Article  CAS  PubMed  Google Scholar 

  362. Masuda H, Hayashi Y, Chancellor MB, Kihara K, de Groat WC, de Miguel F, et al. Roles of peripheral and central nicotinic receptors in the micturition reflex in rats. J Urol. 2006;176:374–9.

    Article  CAS  PubMed  Google Scholar 

  363. Yoshikawa S, Kitta T, Miyazato M, Sumino Y, Yoshimura N. Inhibitory role of the spinal cholinergic system in the control of urethral continence reflex during sneezing in rats. Neurourol Urodyn. 2013;33:443–8.

    Article  PubMed  CAS  Google Scholar 

  364. Dray A, Metsch R. Inhibition of urinary bladder contractions by a spinal action of morphine and other opioids. J Pharmacol Exp Ther. 1984;231:254–60.

    CAS  PubMed  Google Scholar 

  365. Pandita RK, Pehrson R, Christoph T, Friderichs E, Andersson KE. Actions of tramadol on micturition in awake, freely moving rats. Br J Pharmacol. 2003;139:741–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Kamo I, Cannon TW, Conway DA, Torimoto K, Chancellor MB, de Groat WC, et al. The role of bladder-to-urethral reflexes in urinary continence mechanisms in rats. Am J Physiol Renal Physiol. 2004;287:F434–41.

    Article  CAS  PubMed  Google Scholar 

  367. Chen ML, Shen B, Wang J, Liu H, Roppolo JR, de Groat WC, et al. Influence of naloxone on inhibitory pudendal-to-bladder reflex in cats. Exp Neurol. 2010;224:282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Mally AD, Matsuta Y, Zhang F, Shen B, Wang J, Roppolo JR, et al. Role of opioid and metabotropic glutamate 5 receptors in pudendal inhibition of bladder overactivity in cats. J Urol. 2012;189:1574–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  369. Tai C, Larson JA, Ogagan PD, Chen G, Shen B, Wang J, et al. Differential role of opioid receptors in tibial nerve inhibition of nociceptive and nonnociceptive bladder reflexes in cats. Am J Physiol Renal Physiol. 2012;302:F1090–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Hou XH, Hyun M, Taranda J, Huang KW, Todd E, Feng D, et al. Central control circuit for context-dependent micturition. Cell. 2016;167:73–86. e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Kruse MN, Noto H, Roppolo JR, de Groat WC. Pontine control of the urinary bladder and external urethral sphincter in the rat. Brain Res. 1990;532:182–90.

    Article  CAS  PubMed  Google Scholar 

  372. Mallory BS, Roppolo JR, de Groat WC. Pharmacological modulation of the pontine micturition center. Brain Res. 1991;546:310–20.

    Article  CAS  PubMed  Google Scholar 

  373. Matsuura S, Downie JW, Allen GV. Micturition evoked by glutamate microinjection in the ventrolateral periaqueductal gray is mediated through Barrington's nucleus in the rat. Neuroscience. 2000;101:1053–61.

    Article  CAS  PubMed  Google Scholar 

  374. Rocha I, Burnstock G, Spyer KM. Effect on urinary bladder function and arterial blood pressure of the activation of putative purine receptors in brainstem areas. Auton Neurosci 2001; 88:6–15.

    Google Scholar 

  375. Chen SY, Chai CY. Coexistence of neurons integrating urinary bladder activity and pelvic nerve activity in the same cardiovascular areas of the pontomedulla in cats. Chin J Physiol. 2002;45:41–50.

    PubMed  Google Scholar 

  376. Naka H, Nishijima S, Kadekawa K, Sugaya K, Saito S. Influence of glutamatergic projections to the rostral pontine reticular formation on micturition in rats. Life Sci. 2009;85:732–6.

    Article  CAS  PubMed  Google Scholar 

  377. Nishijima S, Sugaya K, Kadekawa K, Ashitomi K, Yamamoto H. Effect of chemical stimulation of the medial frontal lobe on the micturition reflex in rats. J Urol. 2012;187:1116–20.

    Article  PubMed  Google Scholar 

  378. Sugaya K, Nishijima S. Intravenous or local injections of flavoxate in the rostral pontine reticular formation inhibit urinary frequency induced by activation of medial frontal lobe neurons in rats. J Urol. 2014;192:1278–85.

    Article  CAS  PubMed  Google Scholar 

  379. Guo YX, Li DP, Chen SR, Pan HL. Distinct intrinsic and synaptic properties of pre-sympathetic and pre-parasympathetic output neurons in Barrington's nucleus. J Neurochem. 2013;126:338–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Yokoyama O, Ootsuka N, Komatsu K, Kodama K, Yotsuyanagi S, Niikura S. Forebrain muscarinic control of micturition reflex in rats. Neuropharmacology. 2001;41:629–38.

    Article  CAS  PubMed  Google Scholar 

  381. Ishizuka O, Gu BJ, Yang ZX, Nishizawa O, Andersson KE. Functional role of central muscarinic receptors for micturition in normal conscious rats. J Urol. 2002;168:2258–62.

    Article  CAS  PubMed  Google Scholar 

  382. Nakamura Y, Ishiura Y, Yokoyama O, Namiki M, De Groat WC. Role of protein kinase C in central muscarinic inhibitory mechanisms regulating voiding in rats. Neuroscience. 2003;116:477–84.

    Article  CAS  PubMed  Google Scholar 

  383. Sillén U, Rubenson A, Hjälmås K. Central cholinergic mechanisms in L-DOPA induced hyperactive urinary bladder of the rat. Urol Res. 1982;10:239–43.

    Article  PubMed  Google Scholar 

  384. Sugaya K, Nishijima S, Miyazato M, Oda M, Ogawa Y. Chemical stimulation of the pontine micturition center and the nucleus reticularis pontis oralis. Neurourol Urodyn. 1987; 6:143–144.

    Google Scholar 

  385. Lee KS, Na YG, Dean-McKinney T, Klausner AP, Tuttle JB, Steers WD. Alterations in voiding frequency and cystometry in the clomipramine induced model of endogenous depression and reversal with fluoxetine. J Urol. 2003;170:2067–71.

    Article  CAS  PubMed  Google Scholar 

  386. O'Donnell PD. Brookover T, Hewett M, al-Juburi AZ. Continence level following radical prostatectomy. Urology. 1990;36:511–2.

    Article  CAS  PubMed  Google Scholar 

  387. Kanie S, Yokoyama O, Komatsu K, Kodama K, Yotsuyanagi S, Niikura S, et al. GABAergic contribution to rat bladder hyperactivity after middle cerebral artery occlusion. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1230–8.

    Article  CAS  PubMed  Google Scholar 

  388. Matsuta Y, Yusup A, Tanase K, Ishida H, Akino H, Yokoyama O. Melatonin increases bladder capacity via GABAergic system and decreases urine volume in rats. J Urol. 2010;184:386–91.

    Article  CAS  PubMed  Google Scholar 

  389. Albanese A, Jenner P, Marsden CD, Stephenson JD. Bladder hyperreflexia induced in marmosets by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurosci Lett. 1988;87:46–50.

    Article  CAS  PubMed  Google Scholar 

  390. Kontani H, Inoue T, Sakai T. Dopamine receptor subtypes that induce hyperactive urinary bladder response in anesthetized rats. Jpn J Pharmacol. 1990;54:482–6.

    Article  CAS  PubMed  Google Scholar 

  391. Yoshimura N, Sasa M, Yoshida O, Takaori S. Inhibitory effects of Hachimijiogan on micturition reflex via the locus coeruleus. Nihon Yakurigaku Zasshi. 1992;99:161–6.

    Article  CAS  PubMed  Google Scholar 

  392. Yoshimura N, Mizuta E, Kuno S, Sasa M, Yoshida O. The dopamine D1 receptor agonist SKF 38393 suppresses detrusor hyperreflexia in the monkey with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuropharmacology. 1993;32:315–21.

    Article  CAS  PubMed  Google Scholar 

  393. Yoshimura N, Erdman SL. Effects of spinal cord injury on neurofilament immunoreactivity and capsaicin sensitivity in rat dorsal root ganglion neurons innervating the urinary bladder. Neuroscience. 1998;83:633–43.

    Article  CAS  PubMed  Google Scholar 

  394. Yoshimura N, Kuno S, Chancellor MB, De Groat WC, Seki S. Dopaminergic mechanisms underlying bladder hyperactivity in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Br J Pharmacol. 2003;139:1425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Yokoyama O, Yoshiyama M, Namiki M, de Groat WC. Glutamatergic and dopaminergic contributions to rat bladder hyperactivity after cerebral artery occlusion. Am J Phys. 1999;276:R935–42.

    CAS  Google Scholar 

  396. Seki S, Igawa Y, Kaidoh K, Ishizuka O, Nishizawa O, Andersson KE. Role of dopamine D1 and D2 receptors in the micturition reflex in conscious rats. Neurourol Urodyn. 2001;20:105–13.

    Article  CAS  PubMed  Google Scholar 

  397. Hashimoto K, Oyama T, Sugiyama T, Park YC, Kurita T. Neuronal excitation in the ventral tegmental area modulates the micturition reflex mediated via the dopamine D1 and D2 receptors in rats. J Pharmacol Sci. 2003;92:143–8.

    Article  CAS  PubMed  Google Scholar 

  398. Ogawa T, Sakakibara R. Prevalence and treatment of LUTS in patients with Parkinson disease or multiple system atrophy. Nat Rev Urol. 2016;14:79–89.

    Article  PubMed  CAS  Google Scholar 

  399. Yoshimura N, Mizuta E, Yoshida O, Kuno S. Therapeutic effects of dopamine D1/D2 receptor agonists on detrusor hyperreflexia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned parkinsonian cynomolgus monkeys. J Pharmacol Exp Ther. 1998;286:228–33.

    CAS  PubMed  Google Scholar 

  400. Sakakibara R, Nakazawa K, Shiba K, Nakajima Y, Uchiyama T, Yoshiyama M, et al. Firing patterns of micturition-related neurons in the pontine storage centre in cats. Auton Neurosci. 2002;99:24–30.

    Article  PubMed  Google Scholar 

  401. Yamamoto T, Sakakibara R, Hashimoto K, Nakazawa K, Uchiyama T, Liu Z, Ito T, Hattori T. Striatal dopamine level increases in the urinary storage phase in cats: an in vivo microdialysis study. Neuroscience. 2005;135:299–303.

    Article  CAS  PubMed  Google Scholar 

  402. Ogawa T, Seki S, Masuda H, Igawa Y, Nishizawa O, Kuno S, et al. Dopaminergic mechanisms controlling urethral function in rats. Neurourol Urodyn. 2006;25:480–9.

    Article  CAS  PubMed  Google Scholar 

  403. Kitta T, Chancellor MB, de Groat WC, Kuno S, Nonomura K, Yoshimura N. Suppression of bladder overactivity by adenosine A2A receptor antagonist in a rat model of Parkinson disease. J Urol. 2012;187:1890–7.

    Article  CAS  PubMed  Google Scholar 

  404. Kitta T, Yabe I, Takahashi I, Matsushima M, Sasaki H, Shinohara N. Clinical efficacy of istradefylline on lower urinary tract symptoms in Parkinson's disease. Int J Urol. 2016;23:893–4.

    Article  CAS  PubMed  Google Scholar 

  405. Chiba H, Mitsui T, Kitta T, Ohmura Y, Moriya K, Kanno Y, et al. The role of serotonergic mechanism in the rat prefrontal cortex for controlling the micturition reflex: An in vivo microdialysis study. Neurourol Urodyn. 2015;35:902–7.

    Article  PubMed  CAS  Google Scholar 

  406. de Groat WC, Griffiths D. Neural control of the lower urinary tract. Compr Physiol. 2015;5:327–96.

    PubMed  PubMed Central  Google Scholar 

  407. Shimizu T, Shimizu S, Higashi Y, Nakamura K, Yoshimura N, Saito M. A Stress-Related Peptide Bombesin Centrally Induces Frequent Urination through Brain Bombesin Receptor Types 1 and 2 in the Rat. J Pharmacol Exp Ther. 2016;356:693–701.

    Article  PubMed  PubMed Central  Google Scholar 

  408. Shimizu T, Shimizu S, Wada N, Takai S, Shimizu N, Higashi Y, et al. Brain serotoninergic nervous system is involved in bombesin-induced frequent urination through brain 5-HT7 receptors in rats. Br J Pharmacol. 2017;174(18):3072–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Dray A, Metsch R. Opioids and central inhibition of urinary bladder motility. Eur J Pharmacol. 1984;98:155–6.

    Article  CAS  PubMed  Google Scholar 

  410. Hisamitsu T, de Groat WC. The inhibitory effect of opioid peptides and morphine applied intrathecally and intracerebroventricularly on the micturition reflex in the cat. J Physiol Soc Japan. 1984;46:499.

    Google Scholar 

  411. Noto H, Roppolo JR. Opioid modulation of the micturition reflex at the level of the pontine micturition center. Urol Int. 1991;47:19–22.

    Article  PubMed  Google Scholar 

  412. Nagasaka Y, Yokoyama O, Komatsu K, Ishiura Y, Nakamura Y, Namiki M. Effects of opioid subtypes on detrusor overactivity in rats with cerebral infarction. Int J Urol. 2007;14:226–31; discussion 232.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Yoshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshimura, N., Takaoka, E., Suzuki, T., Kwon, J. (2019). Pharmacology of the Lower Urinary Tract. In: Liao, L., Madersbacher, H. (eds) Neurourology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7509-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7509-0_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7507-6

  • Online ISBN: 978-94-017-7509-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics