Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 41))

Summary

Cytochrome c oxidase or complex IV is the terminal enzyme of the aerobic respiratory chain performing the essential process of reducing molecular oxygen to water. The energy resulting from this reaction is exploited to drive proton pumping across the membrane, which in turn contributes to the generation of a proton motive force and the downstream synthesis of ATP. This chapter highlights current progress in the field of bacterial cytochrome c oxidase research from the perspective of the structural and functional characterisation of this family of essential enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine tri-phosphate

CcO:

Cytochrome c oxidase

EPR:

Electron paramagnetic resonance

FTIR:

Fourier transform infra-red spectroscopy

HCO:

Heme copper oxidase

HiPIP:

High potential iron-sulfur protein

MD:

Molecular dynamics

NAD+ :

Nicotinamide adenine dinucleotide (oxidised form)

NADH:

Nicotinamide adenine dinucleotide (reduced form)

NMR:

Nuclear magnetic resonance

N-side:

Electrochemically negative side of the membrane

PDB:

Protein Data Bank

P-side:

Electrochemically positive side of the membrane

ROS:

Reactive oxygen species

SU:

Subunit

References

  • Adelroth P, Gennis RB, Brzezinski P (1998) Role of the pathway through K(I-362) in proton transfer in cytochrome c oxidase from R. sphaeroides. Biochemistry 37:2470–2476

    Article  CAS  PubMed  Google Scholar 

  • Backgren C, Hummer G, Wikstrom M, Puustinen A (2000) Proton translocation by cytochrome c oxidase can take place without the conserved glutamic acid in subunit I. Biochemistry 39:7863–7867

    Article  CAS  PubMed  Google Scholar 

  • Belevich I, Verkhovsky MI, Wikstrom M (2006) Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 440:829–832

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Cavallaro G, Rosato A (2005) A structural model for the adduct between cytochrome c and cytochrome c oxidase. J Biol Inorg Chem 10:613–624

    Article  CAS  PubMed  Google Scholar 

  • Bolshakov IA, Vygodina TV, Gennis R, Karyakin AA, Konstantinov AA (2010) Catalase activity of cytochrome c oxidase assayed with hydrogen peroxide-sensitive electrode microsensor. Biochemistry (Moscow) 75:1352–1360

    Article  CAS  Google Scholar 

  • Brändén M, Sigurdson H, Namslauer A, Gennis RB, Ädelroth P, Brzezinski P (2001) On the role of the K-proton transfer pathway in cytochrome c oxidase. Proc Natl Acad Sci U S A 98:5013–5018

    Article  PubMed  PubMed Central  Google Scholar 

  • Branden M, Tomson F, Gennis RB, Brzezinski P (2002) The entry point of the K-proton-transfer pathway in cytochrome c oxidase. Biochemistry 41:10794–10798

    Article  PubMed  CAS  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92

    Article  CAS  PubMed  Google Scholar 

  • Brandt U (2011) A two-state stabilization-change mechanism for proton-pumping complex I. Biochim Biophys Acta 1807:1364–1369

    Article  CAS  PubMed  Google Scholar 

  • Bratton MR, Pressler MA, Hosler JP (1999) Suicide inactivation of cytochrome c oxidase: catalytic turnover in the absence of subunit III alters the active site. Biochemistry 38:16236–16245

    Article  CAS  PubMed  Google Scholar 

  • Buhrow L, Ferguson-Miller S, Kuhn LA (2012) From static structure to living protein: computational analysis of cytochrome c oxidase main-chain flexibility. Biophys J 102:2158–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundschuh FA, Hoffmeier K, Ludwig B (2008) Two variants of the assembly factor Surf1 target specific terminal oxidases in Paracoccus denitrificans. Biochim Biophys Acta 1777:1336–1343

    Article  CAS  PubMed  Google Scholar 

  • Buschmann S, Warkentin E, Xie H, Langer JD, Ermler U, Michel H (2010) The structure of cbb 3 cytochrome oxidase provides insights into proton pumping. Science 329:327–330

    Article  CAS  PubMed  Google Scholar 

  • Calhoun MW, Thomas JW, Gennis RB (1994) The cytochrome oxidase superfamily of redox-driven proton pumps. Trends Biochem Sci 19:325–330

    Article  CAS  PubMed  Google Scholar 

  • Capitanio G, Martino PL, Capitanio N, De Nitto E, Papa S (2006) pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site. Biochemistry 45:1930–1937

    Article  CAS  PubMed  Google Scholar 

  • Chang HY, Hemp J, Chen Y, Fee JA, Gennis RB (2009) The cytochrome ba 3 oxygen reductase from Thermus thermophilus uses a single input channel for proton delivery to the active site and for proton pumping. Proc Natl Acad Sci U S A 106:16169–16173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts AR (2004) The cytochrome bc 1 complex: function in the context of structure. Annu Rev Physiol 66:689–733

    Article  CAS  PubMed  Google Scholar 

  • Dalziel K, O’Brien JR (1954) Spectrophotometric studies of the reaction of methaemoglobin with hydrogen peroxide. 1. The formation of methaemoglobin-hydrogen peroxide. Biochem J 56:648–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Grotthuss CJT (1806) Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann Chim (Paris) 58:54–73

    Google Scholar 

  • de Vries S (2008) The role of the conserved tryptophan272 of the Paracoccus denitrificans cytochrome c oxidase in proton pumping. Biochim Biophys Acta 1777:925–928

    Article  PubMed  CAS  Google Scholar 

  • Drosou V, Malatesta F, Ludwig B (2002) Mutations in the docking site for cytochrome c on the Paracoccus heme aa 3 oxidase. Electron entry and kinetic phases of the reaction. Eur J Biochem 269:2980–2988

    Article  CAS  PubMed  Google Scholar 

  • Farver O, Grell E, Ludwig B, Michel H, Pecht I (2006) Rates and equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans cytochrome c oxidase. Biophys J 90:2131–2137

    Article  CAS  PubMed  Google Scholar 

  • Ferguson-Miller S, Babcock GT (1996) Heme/copper terminal oxidases. Chem Rev 96:2889–2908

    Article  CAS  PubMed  Google Scholar 

  • Fetter JR, Qian J, Shapleigh J, Thomas JW, Garcia-Horsman A, Schmidt E, Hosler J, …, Ferguson-Miller S (1995) Possible proton relay pathways in cytochrome c oxidase. Proc Natl Acad Sci U S A 92:1604–1608

    Google Scholar 

  • Flock D, Helms V (2002) Protein—protein docking of electron transfer complexes: cytochrome c oxidase and cytochrome c. Proteins 47:75–85

    Article  CAS  PubMed  Google Scholar 

  • Florens L, Schmidt B, McCracken J, Ferguson-Miller S (2001) Fast deuterium access to the buried magnesium/manganese site in cytochrome c oxidase. Biochemistry 40:7491–7497

    Article  CAS  PubMed  Google Scholar 

  • Forte E, Urbani A, Saraste M, Sarti P, Brunori M, Giuffre A (2001) The cytochrome cbb3 from Pseudomonas stutzeri displays nitric oxide reductase activity. Eur J Biochem 268:6486–6491

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Horsman JA, Puustinen A, Gennis RB, Wikstrom M (1995) Proton transfer in cytochrome bo 3 ubiquinol oxidase of Escherichia coli: second-site mutations in subunit I that restore proton pumping in the mutant Asp135 -> Asn. Biochemistry 34:4428–4433

    Article  CAS  PubMed  Google Scholar 

  • Gilderson G, Salomonsson L, Aagaard A, Gray J, Brzezinski P, Hosler J (2003) Subunit III of cytochrome c oxidase of Rhodobacter sphaeroides is required to maintain rapid proton uptake through the D pathway at physiologic pH. Biochemistry 42:7400–7409

    Article  CAS  PubMed  Google Scholar 

  • Giuffre A, Stubauer G, Sarti P, Brunori M, Zumft WG, Buse G, Soulimane T (1999) The heme-copper oxidases of Thermus thermophilus catalyze the reduction of nitric oxide: evolutionary implications. Proc Natl Acad Sci U S A 96:14718–14723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray HB, Winkler JR (2010) Electron flow through metalloproteins. Biochim Biophys Acta 1797:1563–1572

    Article  CAS  PubMed  Google Scholar 

  • Greiner P, Hannappel A, Werner C, Ludwig B (2008) Biogenesis of cytochrome c oxidase—in vitro approaches to study cofactor insertion into a bacterial subunit I. Biochim Biophys Acta 1777:904–911

    Article  CAS  PubMed  Google Scholar 

  • Haltia T, Finel M, Harms N, Nakari T, Raitio M, Wikstrom M, Saraste M (1989) Deletion of the gene for subunit III leads to defective assembly of bacterial cytochrome oxidase. EMBO J 8:3571–3579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    Article  CAS  PubMed  Google Scholar 

  • Hatefi Y, Haavik AG, Griffiths DE (1961) Reconstitution of the electron transport system. I. Preparation and properties of the interacting enzyme complexes. Biochem Biophys Res Commun 4:441–446

    Article  CAS  PubMed  Google Scholar 

  • Hilbers F, von der Hocht I, Ludwig B, Michel H (2013) True wild type and recombinant wild type cytochrome c oxidase from Paracoccus denitrificans show a 20fold difference in their catalase activity. Biochim Biophys Acta 1827:319–327

    Article  CAS  PubMed  Google Scholar 

  • Ho BK, Gruswitz F (2008) HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct Biol 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofacker I, Schulten K (1998) Oxygen and proton pathways in cytochrome c oxidase. Proteins 30:100–107

    Article  CAS  PubMed  Google Scholar 

  • Honnami K, Oshima T (1984) Purification and characterization of cytochrome c oxidase from Thermus thermophilus HB8. Biochemistry 23:454–460

    Article  CAS  Google Scholar 

  • Hosler JP (2004) The influence of subunit III of cytochrome c oxidase on the D pathway, the proton exit pathway and mechanism-based inactivation in subunit I. Biochim Biophys Acta 1655:332–339

    Article  CAS  PubMed  Google Scholar 

  • Hrabakova J, Ataka K, Heberle J, Hildebrandt P, Murgida DH (2006) Long distance electron transfer in cytochrome c oxidase immobilised on electrodes. A surface enhanced resonance Raman spectroscopic study. Phys Chem Chem Phys 8:759–766

    Article  CAS  PubMed  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    Article  CAS  PubMed  Google Scholar 

  • Junemann S, Meunier B, Gennis RB, Rich PR (1997) Effects of mutation of the conserved lysine-362 in cytochrome c oxidase from Rhodobacter sphaeroides. Biochemistry 36:14456–14464

    Article  CAS  PubMed  Google Scholar 

  • Kaila VR, Verkhovsky MI, Hummer G, Wikstrom M (2008) Glutamic acid 242 is a valve in the proton pump of cytochrome c oxidase. Proc Natl Acad Sci U S A 105:6255–6259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaila VR, Johansson MP, Sundholm D, Laakkonen L, Wikstrom M (2009) The chemistry of the CuB site in cytochrome c oxidase and the importance of its unique His-Tyr bond. Biochim Biophys Acta 1787:221–233

    Article  CAS  PubMed  Google Scholar 

  • Kaila VR, Sharma V, Wikstrom M (2011) The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase. Biochim Biophys Acta 1807:80–84

    Article  CAS  PubMed  Google Scholar 

  • Kannt A, Lancaster CR, Michel H (1998a) The coupling of electron transfer and proton translocation: electrostatic calculations on Paracoccus denitrificans cytochrome c oxidase. Biophys J 74:708–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannt A, Soulimane T, Buse G, Becker A, Bamberg E, Michel H (1998b) Electrical current generation and proton pumping catalyzed by the ba 3-type cytochrome c oxidase from Thermus thermophilus. FEBS Lett 434:17–22

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Wikstrom M, Hummer G (2007) Kinetic models of redox-coupled proton pumping. Proc Natl Acad Sci U S A 104:2169–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YC, Wikstrom M, Hummer G (2009) Kinetic gating of the proton pump in cytochrome c oxidase. Proc Natl Acad Sci U S A 106:13707–13712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koepke J, Olkhova E, Angerer H, Muller H, Peng G, Michel H (2009) High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: new insights into the active site and the proton transfer pathways. Biochim Biophys Acta 1787:635–645

    Article  CAS  PubMed  Google Scholar 

  • Kozuch J, von der Hocht I, Hilbers F, Michel H, Weidinger IM (2013) Resonance Raman characterization of the ammonia-generated oxo intermediate of cytochrome c oxidase from Paracoccus denitrificans. Biochemistry 52:6197–6202

    Article  CAS  PubMed  Google Scholar 

  • Kulajta C, Thumfart JO, Haid S, Daldal F, Koch HG (2006) Multi-step assembly pathway of the cbb 3-type cytochrome c oxidase complex. J Mol Biol 355:989–1004

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Ojemyr L, Vakkasoglu A, Brzezinski P, Gennis RB (2009) Properties of Arg481 mutants of the aa 3-type cytochrome c oxidase from Rhodobacter sphaeroides suggest that neither R481 nor the nearby D-propionate of heme a 3 is likely to be the proton loading site of the proton pump. Biochemistry 48:7123–7131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Gennis RB, Adelroth P (2011) Entrance of the proton pathway in cbb 3-type heme-copper oxidases. Proc Natl Acad Sci U S A 108:17661–17666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubben M, Morand K (1994) Novel prenylated hemes as cofactors of cytochrome oxidases. Archaea have modified hemes A and O. J Biol Chem 269:21473–21479

    CAS  PubMed  Google Scholar 

  • Luna VM, Chen Y, Fee JA, Stout CD (2008) Crystallographic studies of Xe and Kr binding within the large internal cavity of cytochrome ba 3 from Thermus thermophilus: structural analysis and role of oxygen transport channels in the heme-Cu oxidases. Biochemistry 47:4657–4665

    Article  CAS  PubMed  Google Scholar 

  • Lyons JA, Aragao D, Slattery O, Pisliakov AV, Soulimane T, Caffrey M (2012) Structural insights into electron transfer in caa 3-type cytochrome oxidase. Nature 487:514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyubenova S, Siddiqui MK, Vries MJ, Ludwig B, Prisner TF (2007) Protein-protein interactions studied by EPR relaxation measurements: cytochrome c and cytochrome c oxidase. J Phys Chem B 111:3839–3846

    Article  CAS  PubMed  Google Scholar 

  • Makhov DV, Popovic DM, Stuchebrukhov AA (2006) Improved density functional theory/electrostatic calculation of the His291 protonation state in cytochrome c oxidase: self-consistent charges for solvation energy calculation. J Phys Chem B 110:12162–12166

    Article  CAS  PubMed  Google Scholar 

  • Maklashina E, Cecchini G (2010) The quinone-binding and catalytic site of complex II. Biochim Biophys Acta 1797:1877–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maneg O, Ludwig B, Malatesta F (2003) Different interaction modes of two cytochrome-c oxidase soluble CuA fragments with their substrates. J Biol Chem 278:46734–46740

    Article  CAS  PubMed  Google Scholar 

  • Maneg O, Malatesta F, Ludwig B, Drosou V (2004) Interaction of cytochrome c with cytochrome oxidase: two different docking scenarios. Biochim Biophys Acta 1655:274–281

    Article  CAS  PubMed  Google Scholar 

  • Marechal A, Iwaki M, Rich PR (2013) Structural changes in cytochrome c oxidase induced by binding of sodium and calcium ions: an ATR-FTIR study. J Am Chem Soc 135:5802–5807

    Article  CAS  PubMed  Google Scholar 

  • Michel H (1999) Cytochrome c oxidase: catalytic cycle and mechanisms of proton pumping—a discussion. Biochemistry 38:15129–15140

    Article  CAS  PubMed  Google Scholar 

  • Mills DA, Hosler JP (2005) Slow proton transfer through the pathways for pumped protons in cytochrome c oxidase induces suicide inactivation of the enzyme. Biochemistry 44:4656–4666

    Article  CAS  PubMed  Google Scholar 

  • Mills DA, Florens L, Hiser C, Qian J, Ferguson-Miller S (2000) Where is ‘outside’ in cytochrome c oxidase and how and when do protons get there? Biochim Biophys Acta 1458:180–187

    Article  CAS  PubMed  Google Scholar 

  • Mills DA, Tan Z, Ferguson-Miller S, Hosler J (2003) A role for subunit III in proton uptake into the D pathway and a possible proton exit pathway in Rhodobacter sphaeroides cytochrome c oxidase. Biochemistry 42:7410–7417

    Article  CAS  PubMed  Google Scholar 

  • Moser CC, Chobot SE, Page CC, Dutton PL (2008) Distance metrics for heme protein electron tunneling. Biochim Biophys Acta 1777:1032–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muresanu L, Pristovsek P, Lohr F, Maneg O, Mukrasch MD, Ruterjans H, Ludwig B, Lucke C (2006) The electron transfer complex between cytochrome c 552 and the CuA domain of the Thermus thermophilus ba 3 oxidase. A combined NMR and computational approach. J Biol Chem 281:14503–14513

    Article  CAS  PubMed  Google Scholar 

  • Ogura T, Kitagawa T (2004) Resonance Raman characterization of the P intermediate in the reaction of bovine cytochrome c oxidase. Biochim Biophys Acta 1655:290–297

    Article  CAS  PubMed  Google Scholar 

  • Orii Y, Okunuki K (1963) Studies on cytochrome a. X. Effect of hydrogen peroxide on absorption spectra of cytochrome a. J Biochem 54:207–213

    CAS  PubMed  Google Scholar 

  • Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci U S A 94:10547–10553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paco L, Galarneau A, Drone J, Fajula F, Bailly C, Pulvin S, Thomas D (2009) Catalase-like activity of bovine met-hemoglobin: interaction with the pseudo-catalytic peroxidation of anthracene traces in aqueous medium. Biotechnol J 4:1460–1470

    Article  CAS  PubMed  Google Scholar 

  • Pawate AS, Morgan J, Namslauer A, Mills D, Brzezinski P, Ferguson-Miller S, Gennis RB (2002) A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steady-state activity but completely eliminates proton pumping. Biochemistry 41:13417–13423

    Article  CAS  PubMed  Google Scholar 

  • Pereira MM, Santana M, Soares CM, Mendes J, Carita JN, Fernandes AS, Saraste M, …, Teixeira M (1999) The caa 3 terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP:oxygen oxidoreductase lacking the key glutamate of the D-channel. Biochim Biophys Acta 1413:1–13

    Google Scholar 

  • Pereira MM, Santana M, Teixeira M (2001) A novel scenario for the evolution of haem-copper oxygen reductases. Biochim Biophys Acta 1505:185–208

    Article  CAS  PubMed  Google Scholar 

  • Pereira MM, Sousa FL, Verissimo AF, Teixeira M (2008) Looking for the minimum common denominator in haem-copper oxygen reductases: towards a unified catalytic mechanism. Biochim Biophys Acta 1777:929–934

    Article  CAS  PubMed  Google Scholar 

  • Popovic DM, Leontyev IV, Beech DG, Stuchebrukhov AA (2010) Similarity of cytochrome c oxidases in different organisms. Proteins 78:2691–2698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin L, Hiser C, Mulichak A, Garavito RM, Ferguson-Miller S (2006) Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Proc Natl Acad Sci U S A 103:16117–16122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin L, Mills DA, Buhrow L, Hiser C, Ferguson-Miller S (2008) A conserved steroid binding site in cytochrome c oxidase. Biochemistry 47:9931–9933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin L, Liu J, Mills DA, Proshlyakov DA, Hiser C, Ferguson-Miller S (2009) Redox-dependent conformational changes in cytochrome c oxidase suggest a gating mechanism for proton uptake. Biochemistry 48:5121–5130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauhamaki V, Baumann M, Soliymani R, Puustinen A, Wikstrom M (2006) Identification of a histidine-tyrosine cross-link in the active site of the cbb 3-type cytochrome c oxidase from Rhodobacter sphaeroides. Proc Natl Acad Sci U S A 103:16135–16140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reincke B, Perez C, Pristovsek P, Lucke C, Ludwig C, Lohr F, Rogov VV, …, Ruterjans H (2001) Solution structure and dynamics of the functional domain of Paracoccus denitrificans cytochrome c(552) in both redox states. Biochemistry 40:12312–12320

    Google Scholar 

  • Rich PR, Marechal A (2013) Functions of the hydrophilic channels in protonmotive cytochrome c oxidase. J R Soc Interface 10:20130183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richter OM, Durr KL, Kannt A, Ludwig B, Scandurra FM, Giuffre A, Sarti P, Hellwig P (2005) Probing the access of protons to the K pathway in the Paracoccus denitrificans cytochrome c oxidase. FEBS J 272:404–412

    Article  CAS  PubMed  Google Scholar 

  • Riistama S, Puustinen A, García-Horsman A, Iwata S, Michel H, Wikström M (1996) Channelling of dioxygen into the respiratory enzyme. Biochim Biophys Acta 1275:1–4

    Article  PubMed  Google Scholar 

  • Roberts VA, Pique ME (1999) Definition of the interaction domain for cytochrome c on cytochrome c oxidase. J Biol Chem 274:38051–38060

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Karlin KD, Wikstrom M (2013) Computational study of the activated O(H) state in the catalytic mechanism of cytochrome c oxidase. Proc Natl Acad Sci U S A 110:16844–16849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe MA, Ferguson-Miller S (2008) A chemically explicit model for the mechanism of proton pumping in heme-copper oxidases. J Bioenerg Biomembr 40:541–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe MA, Krzyaniak MD, Xu S, McCracken J, Ferguson-Miller S (2009) EPR evidence of cyanide binding to the Mn(Mg) center of cytochrome c oxidase: support for Cu(A)-Mg involvement in proton pumping. Biochemistry 48:328–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, Than ME (2000) Structure and mechanism of the aberrant ba (3)-cytochrome c oxidase from Thermus thermophilus. EMBO J 19:1766–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa FL, Alves RJ, Ribeiro MA, Pereira-Leal JB, Teixeira M, Pereira MM (2012) The superfamily of heme-copper oxygen reductases: types and evolutionary considerations. Biochim Biophys Acta 1817:629–637

    Article  CAS  PubMed  Google Scholar 

  • Stryer L, Berg JM, Tymoczko JL (2002) Biochemistry. W.H. Freeman & Co. Ltd, New York

    Google Scholar 

  • Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P, Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321:329–339

    Article  CAS  PubMed  Google Scholar 

  • Thomas JW, Puustinen A, Alben JO, Gennis RB, Wikstrom M (1993) Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity. Biochemistry 32:10923–10928

    Article  CAS  PubMed  Google Scholar 

  • Thornstrom PE, Brzezinski P, Fredriksson PO, Malmstrom BG (1988) Cytochrome c oxidase as an electron-transport-driven proton pump: pH dependence of the reduction levels of the redox centers during turnover. Biochemistry 27:5441–5447

    Article  CAS  PubMed  Google Scholar 

  • Tiefenbrunn T, Liu W, Chen Y, Katritch V, Stout CD, Fee JA, Cherezov V (2011) High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment. PLoS One 6:e22348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo-Cuevas M, Barquera B, Gennis RB, Wikstrom M, Garcia-Horsman JA (1998) The cbb 3-type cytochrome c oxidase from Rhodobacter sphaeroides, a proton-pumping heme-copper oxidase. Biochim Biophys Acta 1365:421–434

    Article  CAS  PubMed  Google Scholar 

  • Tomson FL, Morgan JE, Gu G, Barquera B, Vygodina TV, Gennis RB (2003) Substitutions for glutamate 101 in subunit II of cytochrome c oxidase from Rhodobacter sphaeroides result in blocking the proton-conducting K-channel. Biochemistry 42:1711–1717

    Article  CAS  PubMed  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, …, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144

    Google Scholar 

  • Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8

    Article  CAS  PubMed  Google Scholar 

  • Tuukkanen A, Verkhovsky MI, Laakkonen L, Wikstrom M (2006) The K-pathway revisited: a computational study on cytochrome c oxidase. Biochim Biophys Acta 1757:1117–1121

    Article  CAS  PubMed  Google Scholar 

  • van Dijk AD, Ciofi-Baffoni S, Banci L, Bertini I, Boelens R, Bonvin AM (2007) Modeling protein-protein complexes involved in the cytochrome c oxidase copper-delivery pathway. J Proteome Res 6:1530–1539

    Article  PubMed  CAS  Google Scholar 

  • Verkhovsky MI, Jasaitis A, Verkhovskaya ML, Morgan JE, Wikstrom M (1999) Proton translocation by cytochrome c oxidase. Nature 400:480–483

    Article  CAS  PubMed  Google Scholar 

  • Voicescu M, El Khoury Y, Martel D, Heinrich M, Hellwig P (2009) Spectroscopic analysis of tyrosine derivatives: on the role of the tyrosine-histidine covalent linkage in cytochrome c oxidase. J Phys Chem B 113:13429–13436

    Article  CAS  PubMed  Google Scholar 

  • von der Hocht I, van Wonderen JH, Hilbers F, Angerer H, MacMillan F, Michel H (2011) Interconversions of P and F intermediates of cytochrome c oxidase from Paracoccus denitrificans. Proc Natl Acad Sci U S A 108:3964–3969

    Article  PubMed  PubMed Central  Google Scholar 

  • Vygodina TV, Zakirzianova W, Konstantinov AA (2008) Inhibition of membrane-bound cytochrome c oxidase by zinc ions: high-affinity Zn2+ −binding site at the P-side of the membrane. FEBS Lett 582:4158–4162

    Article  CAS  PubMed  Google Scholar 

  • Vygodina T, Kirichenko A, Konstantinov AA (2013) Direct regulation of cytochrome c oxidase by calcium ions. PLoS One 8:e74436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikstrom M (1981) Energy-dependent reversal of the cytochrome oxidase reaction. Proc Natl Acad Sci U S A 78:4051–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikstrom M (2000) Mechanism of proton translocation by cytochrome c oxidase: a new four-stroke histidine cycle. Biochim Biophys Acta 1458:188–198

    Article  CAS  PubMed  Google Scholar 

  • Wikstrom M, Verkhovsky MI (2007) Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases. Biochim Biophys Acta 1767:1200–1214

    Article  PubMed  CAS  Google Scholar 

  • Xie H, Buschmann S, Langer JD, Ludwig B, Michel H (2014) Biochemical and biophysical characterization of the two isoforms of cbb 3-type cytochrome c oxidase from Pseudomonas stutzeri. J Bacteriol 196:472–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu MA, Egawa T, Shinzawa-Itoh K, Yoshikawa S, Guallar V, Yeh SR, Rousseau DL, Gerfen GJ (2012) Two tyrosyl radicals stabilize high oxidation states in cytochrome c oxidase for efficient energy conservation and proton translocation. J Am Chem Soc 134:4753–4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

J.A. Lyons is funded through an individual postdoctoral fellowship from the Danish Research Council for Natural Sciences. F. Hilbers is funded through the Danish Research Institute of Translational Neuroscience. M. Caffrey is supported through Science Foundation Ireland (12/IA/1255), COST Action CM1306 and the National Institutes of Health (P50GM073210, U54GM094599).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Caffrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lyons, J.A., Hilbers, F., Caffrey, M. (2016). Structure and Function of Bacterial Cytochrome c Oxidases. In: Cramer, W., Kallas, T. (eds) Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling. Advances in Photosynthesis and Respiration, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7481-9_16

Download citation

Publish with us

Policies and ethics