Skip to main content

Cell-Cell Fusion, Chemotaxis and Metastasis

  • Chapter
Intercellular Communication in Cancer

Abstract

This review covers the concept of cell-cell fusion as an important feature of cancer progression and its consequences. The fusion of abnormal (mutated proliferating) cells with “task force” cells of the immune system (e.g., leukocytes and stem cells) that respond to tissue damage and stress has now been demonstrated. Evidence is being accumulated that these hybrid cells incorporate the motile and flexible characteristics of the “task force” cells with the lack of cell-cycle control of the proliferating cells. These characteristics may be the primary features that facilitate invasion and metastasis of cancers. The behavior of leukocytes and stem cells can, thus, be used to understand, predict and ultimately control the most dangerous features of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Strong LC (1949) A new theory of mutation and the origin of cancer. Yale J Biol Med 21(4):293–299

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Berenblum I, Shubik P (1949) An experimental study of the initiating state of carcinogenesis, and a re-examination of the somatic cell mutation theory of cancer. Br J Cancer 3(1):109–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Nordling CO (1955) Evidence regarding the multiple mutation theory of the cancer-inducing mechanism. Acta Genet Stat Med 5(2):93–104

    CAS  PubMed  Google Scholar 

  4. Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A 70(8):2281–2285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Fardon JC (1953) A reconsideration of the somatic mutation theory of cancer in the light of some recent developments. Science 117(3043):441–445

    Article  CAS  PubMed  Google Scholar 

  6. Sonnenschein C, Soto AM (2000) Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog 29(4):205–211

    Article  CAS  PubMed  Google Scholar 

  7. Soto AM, Sonnenschein C (2004) The somatic mutation theory of cancer: growing problems with the paradigm? Bioessays 26(10):1097–1107

    Article  CAS  PubMed  Google Scholar 

  8. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51(1):1–28

    Article  PubMed  Google Scholar 

  9. Duesberg P, Li R, Fabarius A, Hehlmann R (2005) The chromosomal basis of cancer. Cell Oncol 27(5–6):293–318

    CAS  PubMed  Google Scholar 

  10. Nicholson JM, Duesberg P (2009) On the karyotypic origin and evolution of cancer cells. Cancer Genet Cytogenet 194(2):96–110

    Article  CAS  PubMed  Google Scholar 

  11. Heng HH, Stevens JB, Bremer SW, Ye KJ, Liu G, Ye CJ (2010) The evolutionary mechanism of cancer. J Cell Biochem 109(6):1072–1084

    CAS  PubMed  Google Scholar 

  12. Huang S (2012) Tumor progression: chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution. Prog Biophys Mol Biol 110(1):69–86

    Article  CAS  PubMed  Google Scholar 

  13. Goldenberg DM, Bhan RD, Pavia RA (1971) In vivo human-hamster somatic cell fusion indicated by glucose 6-phosphate dehydrogenase and lactate dehydrogenase profiles. Cancer Res 31(8):1148–1152

    CAS  PubMed  Google Scholar 

  14. Goldenberg DM, Pavia RA (1975) Oncogenesis by interspecific interaction of malignant murine and non-malignant hamster cells in vitro. Int J Cancer 15(2):282–300

    Article  CAS  PubMed  Google Scholar 

  15. Bremermann HJ (1979) Theory of spontaneous cell fusion. Sexuality in cell populations as an evolutionarily stable strategy. Applications to immunology and cancer. J Theor Biol 76(3):311–334

    Article  CAS  PubMed  Google Scholar 

  16. Busund LT, Killie MK, Bartnes K, Seljelid R (2002) Spontaneously formed tumorigenic hybrids of Meth A sarcoma and macrophages grow faster and are better vascularized than the parental tumor. Int J Cancer 100(4):407–413

    Article  CAS  PubMed  Google Scholar 

  17. Chakraborty AK, Pawelek JM (2003) GnT-V, macrophage and cancer metastasis: a common link. Clin Exp Metastasis 20(4):365–373

    Article  CAS  PubMed  Google Scholar 

  18. Parris GE (2005) Clinically significant cancer evolves from transient mutated and/or aneuploid neoplasia by cell fusion to form unstable syncytia that give rise to ecologically viable parasite species. Med Hypotheses 65(5):846–850

    Article  PubMed  Google Scholar 

  19. Pawelek JM (2005) Tumour-cell fusion as a source of myeloid traits in cancer. Lancet Oncol 6(12):988–993

    Article  CAS  PubMed  Google Scholar 

  20. Parris GE (2006) The cell clone ecology hypothesis and the cell fusion model of cancer progression and metastasis: history and experimental support. Med Hypotheses 66(1):76–83

    Article  PubMed  Google Scholar 

  21. Pawelek J, Chakraborty A, Lazova R, Yilmaz Y, Cooper D, Brash D, Handerson T (2006) Co-opting macrophage traits in cancer progression: a consequence of tumor cell fusion? Contrib Microbiol 13:138–155

    Article  PubMed  Google Scholar 

  22. Duelli DM, Padilla-Nash HM, Berman D, Murphy KM, Ried T, Lazebnik Y (2007) A virus causes cancer by inducing massive chromosomal instability through cell fusion. Curr Biol 17(5):431–437

    Article  CAS  PubMed  Google Scholar 

  23. Parris GE (2008) Cell-cell fusion is the rate-limiting step in causation and progression of clinically significant cancers. Cancer Genet Cytogenet 185(2):113

    Article  PubMed  Google Scholar 

  24. Dittmar T, Nagler C, Schwitalla S, Reith G, Niggemann B, Zanker KS (2009) Recurrence cancer stem cells--made by cell fusion? Med Hypotheses 73(4):542–547

    Article  CAS  PubMed  Google Scholar 

  25. Lu X, Kang Y (2009) Cell fusion as a hidden force in tumor progression. Cancer Res 69(22):8536–8539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lu X, Kang Y (2011) Cell fusion hypothesis of the cancer stem cell. Adv Exp Med Biol 714:129–140

    Article  CAS  PubMed  Google Scholar 

  27. Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J (2013) Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33:116–128

    Article  PubMed  CAS  Google Scholar 

  28. Dittmar T, Nagler C, Niggemann B, Zanker KS (2013) The dark side of stem cells. Triggering cancer progression by cell fusion. Curr Mol Med 13:735–750

    Article  CAS  PubMed  Google Scholar 

  29. Parris GE (2013) Historical perspective of cell-cell fusion in cancer initiation and progression. Crit Rev Oncog 18(1–2):1–18

    Article  PubMed  Google Scholar 

  30. Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J (2014) Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33(1):116–128

    Article  CAS  PubMed  Google Scholar 

  31. Fukuchi K, Steiniger SC, Deryugina E et al (2010) Inhibition of tumor metastasis: functional immune modulation of the CUB domain containing protein 1. Mol Pharm 7(1):245–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Larizza L, Schirrmacher V, Graf L, Pfluger E, Peres-Martinez M, Stohr M (1984) Suggestive evidence that the highly metastatic variant ESb of the T-cell lymphoma Eb is derived from spontaneous fusion with a host macrophage. Int J Cancer 34(5):699–707

    Article  CAS  PubMed  Google Scholar 

  33. Crowley CW, Cohen RL, Lucas BK, Liu G, Shuman MA, Levinson AD (1993) Prevention of metastasis by inhibition of the urokinase receptor. Proc Natl Acad Sci U S A 90(11):5021–5025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zawadzki V, Perschl A, Rosel M, Hekele A, Zoller M (1998) Blockade of metastasis formation by CD44-receptor globulin. Int J Cancer 75(6):919–924

    Article  CAS  PubMed  Google Scholar 

  35. Goldberg SF, Harms JF, Quon K, Welch DR (1999) Metastasis-suppressed C8161 melanoma cells arrest in lung but fail to proliferate. Clin Exp Metastasis 17(7):601–607

    Article  CAS  PubMed  Google Scholar 

  36. Chakraborty AK, Sodi S, Rachkovsky M, Kolesnikova N, Platt JT, Bolognia JL, Pawelek JM (2000) A spontaneous murine melanoma lung metastasis comprised of host x tumor hybrids. Cancer Res 60(9):2512–2519

    CAS  PubMed  Google Scholar 

  37. Chakraborty AK, Pawelek J, Ikeda Y, Miyoshi E, Kolesnikova N, Funasaka Y, Ichihashi M, Taniguchi N (2001) Fusion hybrids with macrophage and melanoma cells up-regulate N-acetylglucosaminyltransferase V, beta1-6 branching, and metastasis. Cell Growth Differ 12(12):623–630

    CAS  PubMed  Google Scholar 

  38. Parris GE (2005) The role of viruses in cell fusion and its importance to evolution, invasion and metastasis of cancer clones. Med Hypotheses 64(5):1011–1014

    Article  CAS  PubMed  Google Scholar 

  39. Pawelek JM (2007) Viewing malignant melanoma cells as macrophage-tumor hybrids. Cell Adh Migr 1(1):2–6

    Article  PubMed Central  PubMed  Google Scholar 

  40. Pawelek JM (2008) Cancer-cell fusion with migratory bone-marrow-derived cells as an explanation for metastasis: new therapeutic paradigms. Future Oncol 4(4):449–452

    Article  PubMed  Google Scholar 

  41. Pawelek JM, Chakraborty AK (2008) Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8(5):377–386

    Article  CAS  PubMed  Google Scholar 

  42. Pawelek JM, Chakraborty AK (2008) The cancer cell--leukocyte fusion theory of metastasis. Adv Cancer Res 101:397–444

    Article  CAS  PubMed  Google Scholar 

  43. Lazova R, Chakraborty A, Pawelek JM (2011) Leukocyte-cancer cell fusion: initiator of the warburg effect in malignancy? Adv Exp Med Biol 714:151–172

    Article  CAS  PubMed  Google Scholar 

  44. Xu MH, Gao X, Luo D, Zhou XD, Xiong W, Liu GX (2014) EMT and acquisition of stem cell-like properties are involved in spontaneous formation of tumorigenic hybrids between lung cancer and bone marrow-derived mesenchymal stem cells. PLoS One 9(2):e87893

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Li H, Feng Z, Tsang TC et al (2014) Fusion of HepG2 cells with mesenchymal stem cells increases cancer associated and malignant properties: an in vivo metastasis model. Oncol Rep 32:539–547

    CAS  PubMed  Google Scholar 

  46. Castedo M, Coquelle A, Vitale I, Vivet S, Mouhamad S, Viaud S, Zitvogel L, Kroemer G (2006) Selective resistance of tetraploid cancer cells against DNA damage-induced apoptosis. Ann N Y Acad Sci 1090:35–49

    Article  CAS  PubMed  Google Scholar 

  47. Dewhurst SM, McGranahan N, Burrell RA et al (2014) Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov 4(2):175–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gagos S, Iliopoulos D, Tseleni-Balafouta S, Agapitos M, Antachopoulos C, Kostakis A, Karayannakos P, Skalkeas G (1996) Cell senescence and a mechanism of clonal evolution leading to continuous cell proliferation, loss of heterozygosity, and tumor heterogeneity: studies on two immortal colon cancer cell lines. Cancer Genet Cytogenet 90(2):157–165

    Article  CAS  PubMed  Google Scholar 

  49. Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA (2000) Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int 24(9):621–633

    Article  CAS  PubMed  Google Scholar 

  50. Ivanov A, Cragg MS, Erenpreisa J, Emzinsh D, Lukman H, Illidge TM (2003) Endopolyploid cells produced after severe genotoxic damage have the potential to repair DNA double strand breaks. J Cell Sci 116(Pt 20):4095–4106

    Article  CAS  PubMed  Google Scholar 

  51. Schwerer MJ, Hemmer J, Kraft K, Maier H, Moller P, Barth TF (2003) Endoreduplication in conjunction with tumor progression in an aneuploid laryngeal squamous cell carcinoma. Virchows Arch 443(1):98–103

    Article  PubMed  Google Scholar 

  52. Puig PE, Guilly MN, Bouchot A et al (2008) Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int 32(9):1031–1043

    Article  CAS  PubMed  Google Scholar 

  53. Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18(1):99–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Biragyn A, Longo DL (2012) Neoplastic “Black Ops”: cancer’s subversive tactics in overcoming host defenses. Semin Cancer Biol 22(1):50–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Rajaraman R, Rajaraman MM, Rajaraman SR, Guernsey DL (2005) Neosis--a paradigm of self-renewal in cancer. Cell Biol Int 29(12):1084–1097

    Article  CAS  PubMed  Google Scholar 

  56. Duesberg P, Rasnick D (2000) Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil Cytoskeleton 47(2):81–107

    Article  CAS  PubMed  Google Scholar 

  57. Li R, Sonik A, Stindl R, Rasnick D, Duesberg P (2000) Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc Natl Acad Sci U S A 97(7):3236–3241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Marx J (2004) Cancer research. Inflammation and cancer: the link grows stronger. Science 306(5698):966–968

    Article  CAS  PubMed  Google Scholar 

  59. Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22:129–156

    Article  CAS  PubMed  Google Scholar 

  60. Davies PS, Powell AE, Swain JR, Wong MH (2009) Inflammation and proliferation act together to mediate intestinal cell fusion. PLoS One 4(8), e6530

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Harkness T, Weaver BA, Alexander CM, Ogle BM (2013) Cell fusion in tumor development: accelerated genetic evolution. Crit Rev Oncog 18(1–2):19–42

    Article  PubMed  Google Scholar 

  62. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120(3):694–705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D, Luker GD (2004) CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 64(23):8604–8612

    Article  CAS  PubMed  Google Scholar 

  64. Kawada K, Sonoshita M, Sakashita H et al (2004) Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res 64(11):4010–4017

    Article  CAS  PubMed  Google Scholar 

  65. Wang J, Sun Y, Song W, Nor JE, Wang CY, Taichman RS (2005) Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cell Signal 17(12):1578–1592

    Article  CAS  PubMed  Google Scholar 

  66. Kucia M, Ratajczak J, Ratajczak MZ (2005) Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell 97(2):133–146

    Article  CAS  PubMed  Google Scholar 

  67. Hensbergen PJ, Wijnands PG, Schreurs MW, Scheper RJ, Willemze R, Tensen CP (2005) The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8+ T lymphocytes but not inhibition of angiogenesis. J Immunother 28(4):343–351

    Article  CAS  PubMed  Google Scholar 

  68. Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H (2005) Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 65(3):967–971

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Kryczek I, Lange A, Mottram P et al (2005) CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 65(2):465–472

    CAS  PubMed  Google Scholar 

  70. Chute JP (2006) Stem cell homing. Curr Opin Hematol 13(6):399–406

    Article  PubMed  Google Scholar 

  71. Vandercappellen J, Van Damme J, Struyf S (2008) The role of CXC chemokines and their receptors in cancer. Cancer Lett 267(2):226–244

    Article  CAS  PubMed  Google Scholar 

  72. Hu W, Zhen X, Xiong B, Wang B, Zhang W, Zhou W (2008) CXCR6 is expressed in human prostate cancer in vivo and is involved in the in vitro invasion of PC3 and LNCap cells. Cancer Sci 99(7):1362–1369

    Article  CAS  PubMed  Google Scholar 

  73. Lu Y, Wang J, Xu Y, Koch AE, Cai Z, Chen X, Galson DL, Taichman RS, Zhang J (2008) CXCL16 functions as a novel chemotactic factor for prostate cancer cells in vitro. Mol Cancer Res 6(4):546–554

    Article  CAS  PubMed  Google Scholar 

  74. Wang L, Wang Z, Yang B, Yang Q, Sun Y (2009) CXCR4 nuclear localization follows binding of its ligand SDF-1 and occurs in metastatic but not primary renal cell carcinoma. Oncol Rep 22(6):1333–1339

    CAS  PubMed  Google Scholar 

  75. Maksym RB, Tarnowski M, Grymula K et al (2009) The role of stromal-derived factor-1--CXCR7 axis in development and cancer. Eur J Pharmacol 625(1–3):31–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Lin S, Sun L, Hu J, Wan S, Zhao R, Yuan S, Zhang L (2009) Chemokine C-X-C motif receptor 6 contributes to cell migration during hypoxia. Cancer Lett 279(1):108–117

    Article  CAS  PubMed  Google Scholar 

  77. Fulton AM (2009) The chemokine receptors CXCR4 and CXCR3 in cancer. Curr Oncol Rep 11(2):125–131

    Article  CAS  PubMed  Google Scholar 

  78. Ishikawa T, Nakashiro K, Klosek SK, Goda H, Hara S, Uchida D, Hamakawa H (2009) Hypoxia enhances CXCR4 expression by activating HIF-1 in oral squamous cell carcinoma. Oncol Rep 21(3):707–712

    CAS  PubMed  Google Scholar 

  79. Rettig MP, Ramirez P, Nervi B, DiPersio JF (2009) CXCR4 and mobilization of hematopoietic precursors. Methods Enzymol 460:57–90

    Article  CAS  PubMed  Google Scholar 

  80. Juarez JG, Thien M, Dela Pena A, Baraz R, Bradstock KF, Bendall LJ (2009) CXCR4 mediates the homing of B cell progenitor acute lymphoblastic leukaemia cells to the bone marrow via activation of p38MAPK. Br J Haematol 145(4):491–499

    Article  CAS  PubMed  Google Scholar 

  81. Mirisola V, Zuccarino A, Bachmeier BE, Sormani MP, Falter J, Nerlich A, Pfeffer U (2009) CXCL12/SDF1 expression by breast cancers is an independent prognostic marker of disease-free and overall survival. Eur J Cancer 45(14):2579–2587

    Article  CAS  PubMed  Google Scholar 

  82. Liekens S, Schols D, Hatse S (2010) CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr Pharm Des 16(35):3903–3920

    Article  CAS  PubMed  Google Scholar 

  83. Furusato B, Mohamed A, Uhlen M, Rhim JS (2010) CXCR4 and cancer. Pathol Int 60(7):497–505

    Article  CAS  PubMed  Google Scholar 

  84. Vaiselbuh SR (2010) How do leukemic stem cells find their niche? Pediatr Blood Cancer 55(2):218–219

    Article  PubMed  Google Scholar 

  85. Deng L, Chen N, Li Y, Zheng H, Lei Q (2010) CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta 1806(1):42–49

    CAS  PubMed  Google Scholar 

  86. Hirbe AC, Morgan EA, Weilbaecher KN (2010) The CXCR4/SDF-1 chemokine axis: a potential therapeutic target for bone metastases? Curr Pharm Des 16(11):1284–1290

    Article  CAS  PubMed  Google Scholar 

  87. Hou KL, Hao MG, Bo JJ, Wang JH (2010) CXCR7 in tumorigenesis and progression. Chin J Cancer 29(4):456–459

    Article  PubMed  Google Scholar 

  88. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman RS, Pienta KJ, Wang J (2010) CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29(4):709–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Singh AK, Arya RK, Trivedi AK, Sanyal S, Baral R, Dormond O, Briscoe DM, Datta D (2012) Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12. Cytokine Growth Factor Rev 24:41–49

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Oh YS, Kim HY, Song IC, Yun HJ, Jo DY, Kim S, Lee HJ (2012) Hypoxia induces CXCR4 expression and biological activity in gastric cancer cells through activation of hypoxia-inducible factor-1alpha. Oncol Rep 28(6):2239–2246

    CAS  PubMed  Google Scholar 

  91. Shen B, Zheng MQ, Lu JW, Jiang Q, Wang TH, Huang XE (2013) CXCL12-CXCR4 promotes proliferation and invasion of pancreatic cancer cells. Asian Pac J Cancer Prev 14(9):5403–5408

    Article  PubMed  Google Scholar 

  92. Liao YX, Zhou CH, Zeng H, Zuo DQ, Wang ZY, Yin F, Hua YQ, Cai ZD (2013) The role of the CXCL12-CXCR4/CXCR7 axis in the progression and metastasis of bone sarcomas (Review). Int J Mol Med 32(6):1239–1246

    CAS  PubMed  Google Scholar 

  93. Wang B, Wang W, Niu W et al (2014) SDF-1/CXCR4 axis promotes directional migration of colorectal cancer cells through upregulation of integrin alphavbeta6. Carcinogenesis 35(2):282–291

    Article  PubMed  CAS  Google Scholar 

  94. Li B, Xu W, Xu L, Jiang Z, Wen Z, Li K, Xiong S (2010) I-TAC is a dominant chemokine in controlling skin intragraft inflammation via recruiting CXCR3+ cells into the graft. Cell Immunol 260(2):83–91

    Article  CAS  PubMed  Google Scholar 

  95. Zhou WH, Hu WD, Wu ZQ, Zheng XM, Wang BC (2010) Role of CXCL16/CXCR6 axis in the metastasis of human prostate cancer. Zhonghua Yi Xue Za Zhi 90(14):947–951

    CAS  PubMed  Google Scholar 

  96. Guo L, Cui ZM, Zhang J, Huang Y (2011) Chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 correlate with lymph node metastasis in epithelial ovarian carcinoma. Chin J Cancer 30(5):336–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Isozaki T, Arbab AS, Haas CS, Amin MA, Arendt MD, Koch AE, Ruth JH (2013) Evidence that CXCL16 is a potent mediator of angiogenesis and is involved in endothelial progenitor cell chemotaxis : studies in mice with K/BxN serum-induced arthritis. Arthritis Rheum 65(7):1736–1746

    Article  CAS  PubMed  Google Scholar 

  98. Huang Y, Zhang J, Cui ZM, Zhao J, Zheng Y (2013) Expression of the CXCL12/CXCR4 and CXCL16/CXCR6 axes in cervical intraepithelial neoplasia and cervical cancer. Chin J Cancer 32(5):289–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Moustakas A, Heldin P (2014) TGFbeta and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta 1840:2621–2634

    Article  CAS  PubMed  Google Scholar 

  100. Krstic J, Santibanez JF (2014) Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. ScientificWorldJournal 2014:521754

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, Muller AJ (2014) Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol Immunother 63:721–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Watson D, Zhang GY, Hu M, Wang YM, Fletcher J, Sartor M, Alexander SI (2014) Transforming growth factor beta (TGFbeta) plays a crucial role in prolonging allograft survival in an allodepletion (“pruning”) skin transplant model. Transpl Immunol 30:168–177

    Article  CAS  PubMed  Google Scholar 

  103. Matsumoto K, Ema M (2014) Roles of VEGF-A signalling in development, regeneration, and tumours. J Biochem 156:1–10

    Article  CAS  PubMed  Google Scholar 

  104. Sun X, Ingman WV (2014) Cytokine networks that mediate epithelial cell-macrophage crosstalk in the mammary gland: implications for development and cancer. J Mammary Gland Biol Neoplasia 19:191–201

    Article  PubMed  Google Scholar 

  105. Duran C, Talley PJ, Walsh J, Pigott C, Morton IE, Andrews PW (2001) Hybrids of pluripotent and nullipotent human embryonal carcinoma cells: partial retention of a pluripotent phenotype. Int J Cancer 93(3):324–332

    Article  CAS  PubMed  Google Scholar 

  106. Houghton J, Stoicov C, Nomura S et al (2004) Gastric cancer originating from bone marrow-derived cells. Science 306(5701):1568–1571

    Article  CAS  PubMed  Google Scholar 

  107. He X, Tsang TC, Pipes BL, Ablin RJ, Harris DT (2005) A stem cell fusion model of carcinogenesis. J Exp Ther Oncol 5(2):101–109

    CAS  PubMed  Google Scholar 

  108. Chakraborty AK, Sousa Jde F, Chakraborty D, Funasaka Y, Bhattacharya M, Chatterjee A, Pawelek J (2006) GnT-V expression and metastatic phenotypes in macrophage-melanoma fusion hybrids is down-regulated by 5-Aza-dC: evidence for methylation sensitive, extragenic regulation of GnT-V transcription. Gene 374:166–173

    Article  CAS  PubMed  Google Scholar 

  109. Rizvi AZ, Swain JR, Davies PS, Bailey AS, Decker AD, Willenbring H, Grompe M, Fleming WH, Wong MH (2006) Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci U S A 103(16):6321–6325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Wu XZ, Chen D, Xie GR (2007) Bone marrow-derived cells: roles in solid tumor. Minireview. Neoplasma 54(1):1–6

    CAS  PubMed  Google Scholar 

  111. Korbling M, de Lima MJ, Thomas E, Khanna A, Najjar AM, Gu J, Gelovani JG, Broaddus R (2008) Fusion of circulating blood cells with solid-organ tissue cells in clinical stem cell transplants: a potential therapeutic model? Regen Med 3(2):157–164

    Article  CAS  PubMed  Google Scholar 

  112. Sinkovics JG (2009) Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (review). Int J Oncol 35(3):441–465

    CAS  PubMed  Google Scholar 

  113. Estrov Z (2009) Stem cells and somatic cells: reprogramming and plasticity. Clin Lymphoma Myeloma 9(Suppl 3):S319–S328

    Article  PubMed  Google Scholar 

  114. Xu D, Wang F, Gu H, Wang J, Guo Q, Zhang Y, Wang Z (2010) Hybrid cells differentiate to hepatic lineage cells and repair oxidative damage. Cell Mol Biol Lett 15(3):451–472

    Article  CAS  PubMed  Google Scholar 

  115. Howcroft TK, Zhang HG, Dhodapkar M, Mohla S (2011) Vesicle transfer and cell fusion: emerging concepts of cell-cell communication in the tumor microenvironment. Cancer Biol Ther 12(3):159–164

    Article  PubMed Central  PubMed  Google Scholar 

  116. Ferrand J, Noel D, Lehours P, Prochazkova-Carlotti M, Chambonnier L, Menard A, Megraud F, Varon C (2011) Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS One 6(5), e19569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Gao P, Zheng J (2011) Oncogenic virus-mediated cell fusion: new insights into initiation and progression of oncogenic viruses--related cancers. Cancer Lett 303(1):1–8

    Article  CAS  PubMed  Google Scholar 

  118. Ding J, Jin W, Chen C, Shao Z, Wu J (2012) Tumor associated macrophage x cancer cell hybrids may acquire cancer stem cell properties in breast cancer. PLoS One 7(7), e41942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Rappa G, Mercapide J, Lorico A (2012) Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity. Am J Pathol 180(6):2504–2515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Berndt B, Zanker KS, Dittmar T (2013) Cell fusion is a potent inducer of aneuploidy and drug resistance in tumor cell/ normal cell hybrids. Crit Rev Oncog 18(1–2):97–113

    Article  PubMed  Google Scholar 

  121. Tan C, Dannull J, Nair SK, Ding E, Tyler DS, Pruitt SK, Lee WT (2013) Local secretion of IL-12 augments the therapeutic impact of dendritic cell-tumor cell fusion vaccination. J Surg Res 185:904–911

    Article  CAS  PubMed  Google Scholar 

  122. Barone M, Scavo MP, Maiorano E, Di Leo A, Francavilla A (2013) Bone marrow-derived stem cells and hepatocarcinogenesis in hepatitis B virus transgenic mice. Dig Liver Dis 46:243–250

    Article  PubMed  CAS  Google Scholar 

  123. Barry ER, Corry GN, Rasmussen TP (2010) Targeting DOT1L action and interactions in leukemia: the role of DOT1L in transformation and development. Expert Opin Ther Targets 14(4):405–418

    Article  CAS  PubMed  Google Scholar 

  124. Rachkovsky M, Pawelek J (1999) Acquired melanocyte stimulating hormone-inducible chemotaxis following macrophage fusion with Cloudman S91 melanoma cells. Cell Growth Differ 10(7):517–524

    CAS  PubMed  Google Scholar 

  125. Ramakrishnan M, Mathur SR, Mukhopadhyay A (2013) Fusion-derived epithelial cancer cells express hematopoietic markers and contribute to stem cell and migratory phenotype in ovarian carcinoma. Cancer Res 73(17):5360–5370

    Article  CAS  PubMed  Google Scholar 

  126. Laubli H, Borsig L (2010) Selectins promote tumor metastasis. Semin Cancer Biol 20(3):169–177

    Article  PubMed  CAS  Google Scholar 

  127. Ali S, Lazennec G (2007) Chemokines: novel targets for breast cancer metastasis. Cancer Metastasis Rev 26(3–4):401–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev 27(1):41–55

    Article  PubMed  Google Scholar 

  129. Gassmann P, Haier J (2008) The tumor cell-host organ interface in the early onset of metastatic organ colonisation. Clin Exp Metastasis 25(2):171–181

    Article  CAS  PubMed  Google Scholar 

  130. Mousa SA, Petersen LJ (2009) Anti-cancer properties of low-molecular-weight heparin: preclinical evidence. Thromb Haemost 102(2):258–267

    CAS  PubMed  Google Scholar 

  131. Zlotnik A, Burkhardt AM, Homey B (2011) Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol 11(9):597–606

    Article  CAS  PubMed  Google Scholar 

  132. Wang HB, Wang JT, Zhang L et al (2007) P-selectin primes leukocyte integrin activation during inflammation. Nat Immunol 8(8):882–892

    Article  CAS  PubMed  Google Scholar 

  133. Chen M, Geng JG (2006) P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Arch Immunol Ther Exp (Warsz) 54(2):75–84

    Article  CAS  Google Scholar 

  134. Fischer S, Grantzow T, Pagel JI, Tschernatsch M, Sperandio M, Preissner KT, Deindl E (2012) Extracellular RNA promotes leukocyte recruitment in the vascular system by mobilising proinflammatory cytokines. Thromb Haemost 108(4):730–741

    Article  CAS  PubMed  Google Scholar 

  135. Fischer S, Gesierich S, Griemert B, Schanzer A, Acker T, Augustin HG, Olsson AK, Preissner KT (2013) Extracellular RNA liberates tumor necrosis factor-alpha to promote tumor cell trafficking and progression. Cancer Res 73(16):5080–5089

    Article  CAS  PubMed  Google Scholar 

  136. Wang J, Zhang KY, Liu SM, Sen S (2014) Tumor-associated circulating microRNAs as biomarkers of cancer. Molecules 19(2):1912–1938

    Article  PubMed  CAS  Google Scholar 

  137. Record M (2014) Intercellular communication by exosomes in placenta: a possible role in cell fusion? Placenta 35:297–302

    Article  CAS  PubMed  Google Scholar 

  138. Heydtmann M, Lalor PF, Eksteen JA, Hubscher SG, Briskin M, Adams DH (2005) CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J Immunol 174(2):1055–1062

    Article  CAS  PubMed  Google Scholar 

  139. Hundhausen C, Schulte A, Schulz B et al (2007) Regulated shedding of transmembrane chemokines by the disintegrin and metalloproteinase 10 facilitates detachment of adherent leukocytes. J Immunol 178(12):8064–8072

    Article  CAS  PubMed  Google Scholar 

  140. Schramme A, Abdel-Bakky MS, Kampfer-Kolb N, Pfeilschifter J, Gutwein P (2008) The role of CXCL16 and its processing metalloproteinases ADAM10 and ADAM17 in the proliferation and migration of human mesangial cells. Biochem Biophys Res Commun 370(2):311–316

    Article  CAS  PubMed  Google Scholar 

  141. Crawford HC, Dempsey PJ, Brown G, Adam L, Moss ML (2009) ADAM10 as a therapeutic target for cancer and inflammation. Curr Pharm Des 15(20):2288–2299

    Article  CAS  PubMed  Google Scholar 

  142. Bret C, Hose D, Reme T et al (2011) Gene expression profile of ADAMs and ADAMTSs metalloproteinases in normal and malignant plasma cells and in the bone marrow environment. Exp Hematol 39(5):546–557.e548

    Article  CAS  PubMed  Google Scholar 

  143. Miller MA, Meyer AS, Beste MT et al (2013) ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc Natl Acad Sci U S A 110(22):E2074–E2083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Nakayama T, Hieshima K, Izawa D, Tatsumi Y, Kanamaru A, Yoshie O (2003) Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol 170(3):1136–1140

    Article  CAS  PubMed  Google Scholar 

  145. Ludwig A, Weber C (2007) Transmembrane chemokines: versatile ‘special agents’ in vascular inflammation. Thromb Haemost 97(5):694–703

    CAS  PubMed  Google Scholar 

  146. Lehrke M, Millington SC, Lefterova M, Cumaranatunge RG, Szapary P, Wilensky R, Rader DJ, Lazar MA, Reilly MP (2007) CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans. J Am Coll Cardiol 49(4):442–449

    Article  CAS  PubMed  Google Scholar 

  147. Galkina E, Ley K (2007) Leukocyte influx in atherosclerosis. Curr Drug Targets 8(12):1239–1248

    Article  CAS  PubMed  Google Scholar 

  148. Hojo S, Koizumi K, Tsuneyama K et al (2007) High-level expression of chemokine CXCL16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Res 67(10):4725–4731

    Article  CAS  PubMed  Google Scholar 

  149. Darash-Yahana M, Gillespie JW, Hewitt SM et al (2009) The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PLoS One 4(8), e6695

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  150. Borst O, Munzer P, Gatidis S et al (2012) The inflammatory chemokine CXC motif ligand 16 triggers platelet activation and adhesion via CXC motif receptor 6-dependent phosphatidylinositide 3-kinase/Akt signaling. Circ Res 111(10):1297–1307

    Article  CAS  PubMed  Google Scholar 

  151. Parsonage G, Machado LR, Hui JW et al (2012) CXCR6 and CCR5 localize T lymphocyte subsets in nasopharyngeal carcinoma. Am J Pathol 180(3):1215–1222

    Article  CAS  PubMed  Google Scholar 

  152. Goodison S, Urquidi V, Tarin D (1999) CD44 cell adhesion molecules. Mol Pathol 52(4):189–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Takamune Y, Ikebe T, Nagano O, Nakayama H, Ota K, Obayashi T, Saya H, Shinohara M (2007) ADAM-17 associated with CD44 cleavage and metastasis in oral squamous cell carcinoma. Virchows Arch 450(2):169–177

    Article  CAS  PubMed  Google Scholar 

  154. Stamenkovic I, Yu Q (2009) Shedding light on proteolytic cleavage of CD44: the responsible sheddase and functional significance of shedding. J Invest Dermatol 129(6):1321–1324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Anderegg U, Eichenberg T, Parthaune T et al (2009) ADAM10 is the constitutive functional sheddase of CD44 in human melanoma cells. J Invest Dermatol 129(6):1471–1482

    Article  CAS  PubMed  Google Scholar 

  156. Deneberg S, Grovdal M, Karimi M et al (2010) Gene-specific and global methylation patterns predict outcome in patients with acute myeloid leukemia. Leukemia 24:932–941

    Article  CAS  PubMed  Google Scholar 

  157. Skubitz AP (2002) Adhesion molecules. Cancer Treat Res 107:305–329

    CAS  PubMed  Google Scholar 

  158. Vestweber D (2007) Molecular mechanisms that control leukocyte extravasation through endothelial cell contacts. Ernst Schering Found Symp Proc 3:151–167

    PubMed  Google Scholar 

  159. Solanas G, Cortina C, Sevillano M, Batlle E (2011) Cleavage of E-cadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling. Nat Cell Biol 13(9):1100–1107

    Article  CAS  PubMed  Google Scholar 

  160. Dreymueller D, Pruessmeyer J, Groth E, Ludwig A (2012) The role of ADAM-mediated shedding in vascular biology. Eur J Cell Biol 91(6–7):472–485

    Article  CAS  PubMed  Google Scholar 

  161. Horiuchi K (2013) A brief history of tumor necrosis factor alpha--converting enzyme: an overview of ectodomain shedding. Keio J Med 62(1):29–36

    Article  CAS  PubMed  Google Scholar 

  162. Storci G, Sansone P, Mari S et al (2010) TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol 225:682–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Christofferson DE, Li Y, Yuan J (2014) Control of life-or-death decisions by RIP1 kinase. Annu Rev Physiol 76:129–150

    Article  CAS  PubMed  Google Scholar 

  164. Folkman J (1995) Angiogenesis inhibitors generated by tumors. Mol Med 1(2):120–122

    CAS  PubMed Central  PubMed  Google Scholar 

  165. O’Reilly MS, Holmgren L, Shing Y et al (1994) Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol 59:471–482

    Article  PubMed  Google Scholar 

  166. Beecken WD, Fernandez A, Joussen AM et al (2001) Effect of antiangiogenic therapy on slowly growing, poorly vascularized tumors in mice. J Natl Cancer Inst 93(5):382–387

    Article  CAS  PubMed  Google Scholar 

  167. O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  PubMed  Google Scholar 

  168. Benelli R, Morini M, Carrozzino F, Ferrari N, Minghelli S, Santi L, Cassatella M, Noonan DM, Albini A (2002) Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J 16(2):267–269

    CAS  PubMed  Google Scholar 

  169. Stecher VJ (1975) The chemotaxis of selected cell types to connective tissue degradation products. Ann N Y Acad Sci 256:177–189

    Article  CAS  PubMed  Google Scholar 

  170. Abbassi O, Kishimoto TK, McIntire LV, Anderson DC, Smith CW (1993) E-selectin supports neutrophil rolling in vitro under conditions of flow. J Clin Invest 92(6):2719–2730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Dejana E, Breviario F, Caveda L (1994) Leukocyte-endothelial cell adhesive receptors. Clin Exp Rheumatol 12(Suppl 10):S25–S28

    PubMed  Google Scholar 

  172. Sriramarao P, Norton CR, Borgstrom P, DiScipio RG, Wolitzky BA, Broide DH (1996) E-selectin preferentially supports neutrophil but not eosinophil rolling under conditions of flow in vitro and in vivo. J Immunol 157(10):4672–4680

    CAS  PubMed  Google Scholar 

  173. Rainger GE, Wautier MP, Nash GB, Wautier JL (1996) Prolonged E-selectin induction by monocytes potentiates the adhesion of flowing neutrophils to cultured endothelial cells. Br J Haematol 92(1):192–199

    Article  CAS  PubMed  Google Scholar 

  174. Xie X, Raud J, Hedqvist P, Lindbom L (1997) In vivo rolling and endothelial selectin binding of mononuclear leukocytes is distinct from that of polymorphonuclear cells. Eur J Immunol 27(11):2935–2941

    Article  CAS  PubMed  Google Scholar 

  175. Tangemann K, Gunn MD, Giblin P, Rosen SD (1998) A high endothelial cell-derived chemokine induces rapid, efficient, and subset-selective arrest of rolling T lymphocytes on a reconstituted endothelial substrate. J Immunol 161(11):6330–6337

    CAS  PubMed  Google Scholar 

  176. Kunkel EJ, Butcher EC (2002) Chemokines and the tissue-specific migration of lymphocytes. Immunity 16(1):1–4

    Article  CAS  PubMed  Google Scholar 

  177. Alon R, Feigelson S (2002) From rolling to arrest on blood vessels: leukocyte tap dancing on endothelial integrin ligands and chemokines at sub-second contacts. Semin Immunol 14(2):93–104

    Article  CAS  PubMed  Google Scholar 

  178. Renard M, Heutte F, Boutherin-Falson O, Finet M, Boisseau MR (2003) Induced changes of leukocyte slow rolling in an in flow pharmacological model of adhesion to endothelial cells. Biorheology 40(1–3):173–178

    CAS  PubMed  Google Scholar 

  179. Ding Z, Issekutz TB, Downey GP, Waddell TK (2003) L-selectin stimulation enhances functional expression of surface CXCR4 in lymphocytes: implications for cellular activation during adhesion and migration. Blood 101(11):4245–4252

    Article  CAS  PubMed  Google Scholar 

  180. Biancone L, Cantaluppi V, Duo D, Deregibus MC, Torre C, Camussi G (2004) Role of L-selectin in the vascular homing of peripheral blood-derived endothelial progenitor cells. J Immunol 173(8):5268–5274

    Article  CAS  PubMed  Google Scholar 

  181. Stein JV, Nombela-Arrieta C (2005) Chemokine control of lymphocyte trafficking: a general overview. Immunology 116(1):1–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. Laudanna C, Alon R (2006) Right on the spot. Chemokine triggering of integrin-mediated arrest of rolling leukocytes. Thromb Haemost 95(1):5–11

    CAS  PubMed  Google Scholar 

  183. Vestweber D (2007) Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev 218:178–196

    Article  CAS  PubMed  Google Scholar 

  184. Schaff U, Mattila PE, Simon SI, Walcheck B (2008) Neutrophil adhesion to E-selectin under shear promotes the redistribution and co-clustering of ADAM17 and its proteolytic substrate L-selectin. J Leukoc Biol 83(1):99–105

    Article  CAS  PubMed  Google Scholar 

  185. Sarkar D, Vemula PK, Teo GS, Spelke D, Karnik R, le Wee Y, Karp JM (2008) Chemical engineering of mesenchymal stem cells to induce a cell rolling response. Bioconjug Chem 19(11):2105–2109

    Article  CAS  PubMed  Google Scholar 

  186. Wiese G, Barthel SR, Dimitroff CJ (2009) Analysis of physiologic E-selectin-mediated leukocyte rolling on microvascular endothelium. J Vis Exp (24). doi:10.3791/1009

  187. Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, Yarmush ML (2010) Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant 19(6):667–679

    Article  PubMed Central  PubMed  Google Scholar 

  188. Brandau S, Jakob M, Hemeda H, Bruderek K, Janeschik S, Bootz F, Lang S (2010) Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol 88(5):1005–1015

    Article  CAS  PubMed  Google Scholar 

  189. Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B (2009) CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113(24):6085–6093

    Article  CAS  PubMed  Google Scholar 

  190. Zheng K, Li HY, Su XL, Wang XY, Tian T, Li F, Ren GS (2010) Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells. J Exp Clin Cancer Res 29:31

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  191. Hoffmann F, Muller W, Schutz D, Penfold ME, Wong YH, Schulz S, Stumm R (2012) Rapid uptake and degradation of CXCL12 depend on CXCR7 carboxyl-terminal serine/threonine residues. J Biol Chem 287(34):28362–28377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Sanchez-Martin L, Sanchez-Mateos P, Cabanas C (2013) CXCR7 impact on CXCL12 biology and disease. Trends Mol Med 19(1):12–22

    Article  CAS  PubMed  Google Scholar 

  193. Berahovich RD, Zabel BA, Lewen S, Walters MJ, Ebsworth K, Wang Y, Jaen JC, Schall TJ (2014) Endothelial expression of CXCR7 and the regulation of systemic CXCL12 levels. Immunology 141(1):111–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  194. Levine AJ (2009) The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. Virology 384(2):285–293

    Article  CAS  PubMed  Google Scholar 

  195. Lutz WK (1998) Dose–response relationships in chemical carcinogenesis: superposition of different mechanisms of action, resulting in linear-nonlinear curves, practical thresholds, J-shapes. Mutat Res 405(2):117–124

    Article  CAS  PubMed  Google Scholar 

  196. Cohen SM, Ohnishi T, Arnold LL, Le XC (2007) Arsenic-induced bladder cancer in an animal model. Toxicol Appl Pharmacol 222(3):258–263

    Article  CAS  PubMed  Google Scholar 

  197. Ames BN, Gold LS (1996) Re: E. Farber, Cell proliferation as a major risk factor for cancer: a concept of doubtful validity. Cancer Res., 55: 3759–3762, 1995. Cancer Res 56(18):4267–4269, author reply 4272–4264

    CAS  PubMed  Google Scholar 

  198. Butterworth BE, Loury DJ, Smith-Oliver T, Cattley RC (1987) The potential role of chemically induced hyperplasia in the carcinogenic activity of the hypolipidemic carcinogens. Toxicol Ind Health 3(2):129–149

    Article  CAS  PubMed  Google Scholar 

  199. Ames BN (1989) Mutagenesis and carcinogenesis: endogenous and exogenous factors. Environ Mol Mutagen 14(Suppl 16):66–77

    Article  CAS  PubMed  Google Scholar 

  200. Ames BN, Gold LS (1990) Chemical carcinogenesis: too many rodent carcinogens. Proc Natl Acad Sci U S A 87(19):7772–7776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Marshall WL, Yim C, Gustafson E, Graf T, Sage DR, Hanify K, Williams L, Fingeroth J, Finberg RW (1999) Epstein-Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak. J Virol 73(6):5181–5185

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Choi YB, Nicholas J (2008) Autocrine and paracrine promotion of cell survival and virus replication by human herpesvirus 8 chemokines. J Virol 82(13):6501–6513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Haigh J (1978) The accumulation of deleterious genes in a population – Muller’s Ratchet. Theor Popul Biol 14(2):251–267

    Article  CAS  PubMed  Google Scholar 

  204. Chao L (1990) Fitness of RNA virus decreased by Muller’s ratchet. Nature 348(6300):454–455

    Article  CAS  PubMed  Google Scholar 

  205. Andersson DI, Hughes D (1996) Muller’s ratchet decreases fitness of a DNA-based microbe. Proc Natl Acad Sci U S A 93(2):906–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  206. Yuste E, Sanchez-Palomino S, Casado C, Domingo E, Lopez-Galindez C (1999) Drastic fitness loss in human immunodeficiency virus type 1 upon serial bottleneck events. J Virol 73(4):2745–2751

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Philos Trans R Soc Lond B Biol Sci 355(1403):1563–1572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  208. Fontanari JF, Colato A, Howard RS (2003) Mutation accumulation in growing asexual lineages. Phys Rev Lett 91(21):218101

    Article  CAS  PubMed  Google Scholar 

  209. Takeuchi N, Kaneko K, Koonin EV (2014) Horizontal gene transfer can rescue prokaryotes from Muller’s ratchet: benefit of DNA from dead cells and population subdivision. G3 (Bethesda) 4(2):325–339

    Google Scholar 

  210. Huxley J (1956) Cancer biology: comparative and genetic. Biol Rev Camb Philos Soc 31:474–514

    Article  Google Scholar 

  211. Vincent MD (2010) The animal within: carcinogenesis and the clonal evolution of cancer cells are speciation events sensu stricto. Evolution 64(4):1173–1183

    Article  PubMed  Google Scholar 

  212. Duesberg P, Rausch C, Rasnick D, Hehlmann R (1998) Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proc Natl Acad Sci U S A 95(23):13692–13697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  213. Knauss S, Klein A (2012) From aneuploidy to cancer: the evolution of a new species? J Biosci 37(2):211–220

    Article  PubMed  Google Scholar 

  214. Lisanti MP, Martinez-Outschoorn UE, Chiavarina B et al (2010) Understanding the “lethal” drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol Ther 10(6):537–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  215. Duesberg P, Li R, Fabarius A, Hehlmann R (2006) Aneuploidy and cancer: from correlation to causation. Contrib Microbiol 13:16–44

    Article  PubMed  Google Scholar 

  216. O’Connor ML, Xiang D, Shigdar S et al (2014) Cancer stem cells: a contentious hypothesis now moving forward. Cancer Lett 344(2):180–187

    Article  PubMed  CAS  Google Scholar 

  217. Colombo F, Baldan F, Mazzucchelli S et al (2011) Evidence of distinct tumour-propagating cell populations with different properties in primary human hepatocellular carcinoma. PLoS One 6(6), e21369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  218. Lluis F, Cosma MP (2010) Cell-fusion-mediated somatic-cell reprogramming: a mechanism for tissue regeneration. J Cell Physiol 223(1):6–13

    CAS  PubMed  Google Scholar 

  219. Nagler C, Zanker KS, Dittmar T (2011) Cell fusion, drug resistance and recurrence CSCs. Adv Exp Med Biol 714:173–182

    Article  CAS  PubMed  Google Scholar 

  220. Sanges D, Lluis F, Cosma MP (2011) Cell-fusion-mediated reprogramming: pluripotency or transdifferentiation? Implications for regenerative medicine. Adv Exp Med Biol 713:137–159

    Article  CAS  PubMed  Google Scholar 

  221. Chen KA, Laywell ED, Marshall G, Walton N, Zheng T, Steindler DA (2006) Fusion of neural stem cells in culture. Exp Neurol 198(1):129–135

    Article  CAS  PubMed  Google Scholar 

  222. Larsson LI, Bjerregaard B, Talts JF (2008) Cell fusions in mammals. Histochem Cell Biol 129(5):551–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  223. Li B, Bailey AS, Jiang S, Liu B, Goldman DC, Fleming WH (2010) Endothelial cells mediate the regeneration of hematopoietic stem cells. Stem Cell Res 4(1):17–24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  224. Grompe M (2003) The role of bone marrow stem cells in liver regeneration. Semin Liver Dis 23(4):363–372

    Article  PubMed  Google Scholar 

  225. Koyanagi M, Brandes RP, Haendeler J, Zeiher AM, Dimmeler S (2005) Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res 96(10):1039–1041

    Article  CAS  PubMed  Google Scholar 

  226. Padron Velazquez JL (2006) Stem cell fusion as an ultimate line of defense against xenobiotics. Med Hypotheses 67(2):383–387

    Article  CAS  PubMed  Google Scholar 

  227. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Article  CAS  PubMed  Google Scholar 

  228. Jansen KM, Pavlath GK (2008) Molecular control of mammalian myoblast fusion. Methods Mol Biol 475:115–133

    Article  CAS  PubMed  Google Scholar 

  229. Piquer-Gil M, Garcia-Verdugo JM, Zipancic I, Sanchez MJ, Alvarez-Dolado M (2009) Cell fusion contributes to pericyte formation after stroke. J Cereb Blood Flow Metab 29(3):480–485

    Article  CAS  PubMed  Google Scholar 

  230. Clancy EK, Barry C, Ciechonska M, Duncan R (2010) Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents. Virology 397(1):119–129

    Article  CAS  PubMed  Google Scholar 

  231. Basanez G (2002) Membrane fusion: the process and its energy suppliers. Cell Mol Life Sci 59(9):1478–1490

    Article  CAS  PubMed  Google Scholar 

  232. Chen EH, Olson EN (2005) Unveiling the mechanisms of cell-cell fusion. Science 308(5720):369–373

    Article  CAS  PubMed  Google Scholar 

  233. Digel M, Sampaio KL, Jahn G, Sinzger C (2006) Evidence for direct transfer of cytoplasmic material from infected to uninfected cells during cell-associated spread of human cytomegalovirus. J Clin Virol 37(1):10–20

    Article  CAS  PubMed  Google Scholar 

  234. Podbilewicz B (2006) Cell fusion. WormBook 1–32

    Google Scholar 

  235. Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9(3):310–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  236. Duelli D, Lazebnik Y (2007) Cell-to-cell fusion as a link between viruses and cancer. Nat Rev Cancer 7(12):968–976

    Article  CAS  PubMed  Google Scholar 

  237. Salsman J, Top D, Barry C, Duncan R (2008) A virus-encoded cell-cell fusion machine dependent on surrogate adhesins. PLoS Pathog 4(3), e1000016

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  238. Hu L, Plafker K, Vorozhko V, Zuna RE, Hanigan MH, Gorbsky GJ, Plafker SM, Angeletti PC, Ceresa BP (2009) Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion. Virology 384(1):125–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  239. Richard JP, Leikina E, Langen R, Henne WM, Popova M, Balla T, McMahon HT, Kozlov M, Chernomordik L (2011) Intracellular curvature generating proteins in cell-to-cell fusion. Biochem J 440:185–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  240. Lawrence P, Perez BE, Drexler JF, Corman VM, Muller MA, Drosten C, Volchkov V (2014) Surface glycoproteins of the recently identified African Henipavirus promote viral entry and cell fusion in a range of Human, Simian and Bat cell lines. Virus Res 181:77–80

    Article  CAS  PubMed  Google Scholar 

  241. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11(19):1553–1558

    Article  CAS  PubMed  Google Scholar 

  242. Ying QL, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416(6880):545–548

    Article  CAS  PubMed  Google Scholar 

  243. Ambrosi DJ, Rasmussen TP (2005) Reprogramming mediated by stem cell fusion. J Cell Mol Med 9(2):320–330

    Article  CAS  PubMed  Google Scholar 

  244. Do JT, Han DW, Scholer HR (2006) Reprogramming somatic gene activity by fusion with pluripotent cells. Stem Cell Rev 2(4):257–264

    Article  CAS  PubMed  Google Scholar 

  245. Ambrosi DJ, Tanasijevic B, Kaur A, Obergfell C, O’Neill RJ, Krueger W, Rasmussen TP (2007) Genome-wide reprogramming in hybrids of somatic cells and embryonic stem cells. Stem Cells 25(5):1104–1113

    Article  CAS  PubMed  Google Scholar 

  246. Hanna J, Carey BW, Jaenisch R (2008) Reprogramming of somatic cell identity. Cold Spring Harb Symp Quant Biol 73:147–155

    Article  CAS  PubMed  Google Scholar 

  247. Matsumura H, Tada T (2008) Cell fusion-mediated nuclear reprogramming of somatic cells. Reprod Biomed Online 16(1):51–56

    Article  PubMed  Google Scholar 

  248. Sumer H, Nicholls C, Pinto AR, Indraharan D, Liu J, Lim ML, Liu JP, Verma PJ (2010) Chromosomal and telomeric reprogramming following ES-somatic cell fusion. Chromosoma 119(2):167–176

    Article  PubMed  Google Scholar 

  249. Sumer H, Jones KL, Liu J, Heffernan C, Tat PA, Upton KR, Verma PJ (2010) Reprogramming of somatic cells after fusion with induced pluripotent stem cells and nuclear transfer embryonic stem cells. Stem Cells Dev 19(2):239–246

    Article  CAS  PubMed  Google Scholar 

  250. Do JT, Scholer HR (2010) Cell fusion-induced reprogramming. Methods Mol Biol 636:179–190

    Article  CAS  PubMed  Google Scholar 

  251. Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S, Wong MH (2011) Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res 71(4):1497–1505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  252. Li GC, Ye QH, Dong QZ, Ren N, Jia HL, Qin LX (2012) Mesenchymal stem cells seldomly fuse with hepatocellular carcinoma cells and are mainly distributed in the tumor stroma in mouse models. Oncol Rep 29:713–719

    CAS  PubMed  Google Scholar 

  253. Wang Y, Fan H, Zhou B, Ju Z, Yu L, Guo L, Han J, Lu S (2012) Fusion of human umbilical cord mesenchymal stem cells with esophageal carcinoma cells inhibits the tumorigenicity of esophageal carcinoma cells. Int J Oncol 40(2):370–377

    CAS  PubMed  Google Scholar 

  254. Chakraborty AK, de Freitas Sousa J, Espreafico EM, Pawelek JM (2001) Human monocyte x mouse melanoma fusion hybrids express human gene. Gene 275(1):103–106

    Article  CAS  PubMed  Google Scholar 

  255. Goldenberg DM, Pavia RA, Tsao MC (1974) In vivo hybridisation of human tumour and normal hamster cells. Nature 250(5468):649–651

    Article  CAS  PubMed  Google Scholar 

  256. Goldenberg DM, Zagzag D, Heselmeyer-Haddad KM, Berroa Garcia LY, Ried T, Loo M, Chang CH, Gold DV (2012) Horizontal transmission and retention of malignancy, as well as functional human genes, after spontaneous fusion of human glioblastoma and hamster host cells in vivo. Int J Cancer 131(1):49–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  257. Goldenberg DM, Gold DV, Loo M, Liu D, Chang CH, Jaffe ES (2013) Horizontal transmission of malignancy: in-vivo fusion of human lymphomas with hamster stroma produces tumors retaining human genes and lymphoid pathology. PLoS One 8(2), e55324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  258. Sundaram M, Guernsey DL, Rajaraman MM, Rajaraman R (2004) Neosis: a novel type of cell division in cancer. Cancer Biol Ther 3(2):207–218

    Article  CAS  PubMed  Google Scholar 

  259. Rajaraman R, Guernsey DL, Rajaraman MM, Rajaraman SR (2006) Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell Int 6:25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  260. Erenpreisa J, Cragg MS (2007) Cancer: a matter of life cycle? Cell Biol Int 31(12):1507–1510

    Article  CAS  PubMed  Google Scholar 

  261. Duncan AW, Dorrell C, Grompe M (2009) Stem cells and liver regeneration. Gastroenterology 137(2):466–481

    Article  PubMed Central  PubMed  Google Scholar 

  262. Duncan AW, Hickey RD, Paulk NK, Culberson AJ, Olson SB, Finegold MJ, Grompe M (2009) Ploidy reductions in murine fusion-derived hepatocytes. PLoS Genet 5(2), e1000385

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  263. Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML, Olson SB, Finegold MJ, Grompe M (2010) The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467(7316):707–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  264. Duncan AW, Hanlon Newell AE, Smith L, Wilson EM, Olson SB, Thayer MJ, Strom SC, Grompe M (2012) Frequent aneuploidy among normal human hepatocytes. Gastroenterology 142(1):25–28

    Article  PubMed Central  PubMed  Google Scholar 

  265. Do JT, Scholer HR (2006) Cell-cell fusion as a means to establish pluripotency. Ernst Schering Res Found Workshop 60:35–45

    Article  CAS  PubMed  Google Scholar 

  266. Guo J, Tecirlioglu RT, Nguyen L, Koh K, Jenkin G, Trounson A (2010) Reprogramming factors involved in hybrids and cybrids of human embryonic stem cells fused with hepatocytes. Cell Reprogram 12(5):529–541

    Article  CAS  PubMed  Google Scholar 

  267. Pawelek JM (1993) Melanoma as a macrophage/melanocyte hybrid and the symbiotic nature of eukaryotic cells. Melanoma Res 3(1):75–76

    Article  CAS  PubMed  Google Scholar 

  268. Sodi SA, Chakraborty AK, Platt JT et al (1998) Melanoma x macrophage fusion hybrids acquire increased melanogenesis and metastatic potential: altered N-glycosylation as an underlying mechanism. Pigment Cell Res 11(5):299–309

    Article  CAS  PubMed  Google Scholar 

  269. Rachkovsky M, Sodi S, Chakraborty A, Avissar Y, Bolognia J, McNiff JM, Platt J, Bermudes D, Pawelek J (1998) Melanoma x macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis 16(4):299–312

    Article  CAS  PubMed  Google Scholar 

  270. Pawelek JM (2000) Tumour cell hybridization and metastasis revisited. Melanoma Res 10(6):507–514

    Article  CAS  PubMed  Google Scholar 

  271. DiPaolo JA, Popescu NC (1976) Relationship of chromosome changes to neoplastic cell transformation. Am J Pathol 85(3):709–738

    CAS  PubMed Central  PubMed  Google Scholar 

  272. Hubner B, Strickfaden H, Muller S, Cremer M, Cremer T (2009) Chromosome shattering: a mitotic catastrophe due to chromosome condensation failure. Eur Biophys J 38(6):729–747

    Article  CAS  PubMed  Google Scholar 

  273. Holland AJ, Cleveland DW (2012) Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 18(11):1630–1638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  274. Storchova Z, Kuffer C (2008) The consequences of tetraploidy and aneuploidy. J Cell Sci 121(Pt 23):3859–3866

    Article  CAS  PubMed  Google Scholar 

  275. Lv L, Zhang T, Yi Q et al (2012) Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells. Cell Cycle 11(15):2864–2875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  276. Vogt M (1959) A study of the relationship between karyotype and phenotype in clones lines of strain hela. Genetics 44(6):1257–1270

    CAS  PubMed Central  PubMed  Google Scholar 

  277. Ghosh S, Ghosh I (1975) Variation of stemline karyotype in a HeLa cell line. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol 84(2):129–133

    Article  CAS  PubMed  Google Scholar 

  278. Savelyeva L, Mamaeva S (1987) Heterogeneity and balance of chromosomes in human cell line M-HeLa-76: analysis of 100 karyotypes. Cancer Genet Cytogenet 28(2):311–325

    Article  CAS  PubMed  Google Scholar 

  279. Chen TR (1988) Re-evaluation of HeLa, HeLa S3, and HEp-2 karyotypes. Cytogenet Cell Genet 48(1):19–24

    Article  CAS  PubMed  Google Scholar 

  280. Cohen EP, Kim TS (1994) Neoplastic cells that express low levels of MHC class I determinants escape host immunity. Semin Cancer Biol 5(6):419–428

    CAS  PubMed  Google Scholar 

  281. Algarra I, Garcia-Lora A, Cabrera T, Ruiz-Cabello F, Garrido F (2004) The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 53(10):904–910

    Article  CAS  PubMed  Google Scholar 

  282. Prendergast GC (2008) Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene 27(28):3889–3900

    Article  CAS  PubMed  Google Scholar 

  283. Chitadze G, Lettau M, Bhat J et al (2013) Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int J Cancer 133(7):1557–1566

    Article  CAS  PubMed  Google Scholar 

  284. Barsoum IB, Hamilton TK, Li X, Cotechini T, Miles EA, Siemens DR, Graham CH (2011) Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res 71(24):7433–7441

    Article  CAS  PubMed  Google Scholar 

  285. Passlick B, Pantel K, Kubuschok B, Angstwurm M, Neher A, Thetter O, Schweiberer L, Izbicki JR (1996) Expression of MHC molecules and ICAM-1 on non-small cell lung carcinomas: association with early lymphatic spread of tumour cells. Eur J Cancer 32A(1):141–145

    Article  CAS  PubMed  Google Scholar 

  286. Belov K (2011) The role of the major histocompatibility complex in the spread of contagious cancers. Mamm Genome 22(1–2):83–90

    Article  CAS  PubMed  Google Scholar 

  287. Maghazachi AA (2010) Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 341:37–58

    CAS  PubMed  Google Scholar 

  288. Busch S, Acar A, Magnusson Y, Gregersson P, Ryden L, Landberg G (2013) TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene 34:27–38

    Article  PubMed  CAS  Google Scholar 

  289. Rajasekaran K, Chu H, Kumar P et al (2011) Transforming growth factor-beta-activated kinase 1 regulates natural killer cell-mediated cytotoxicity and cytokine production. J Biol Chem 286(36):31213–31224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  290. Marcoe JP, Lim JR, Schaubert KL, Fodil-Cornu N, Matka M, McCubbrey AL, Farr AR, Vidal SM, Laouar Y (2012) TGF-beta is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy. Nat Immunol 13(9):843–850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  291. Fang WB, Jokar I, Chytil A, Moses HL, Abel T, Cheng N (2011) Loss of one Tgfbr2 allele in fibroblasts promotes metastasis in MMTV: polyoma middle T transgenic and transplant mouse models of mammary tumor progression. Clin Exp Metastasis 28(4):351–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  292. Gold LI (1999) The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 10(4):303–360

    CAS  PubMed  Google Scholar 

  293. Pardali K, Moustakas A (2007) Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775(1):21–62

    CAS  PubMed  Google Scholar 

  294. Quintana-Bustamante O, Grueso E, Garcia-Escudero R, Arza E, Alvarez-Barrientos A, Fabregat I, Garcia-Bravo M, Meza NW, Segovia JC (2012) Cell fusion reprogramming leads to a specific hepatic expression pattern during mouse bone marrow derived hepatocyte formation in vivo. PLoS One 7(3), e33945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  295. Zhang C, Zhang F, Tsan R, Fidler IJ (2009) Transforming growth factor-beta2 is a molecular determinant for site-specific melanoma metastasis in the brain. Cancer Res 69(3):828–835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  296. Lu Y, Jiang F, Zheng X, Katakowski M, Buller B, To SS, Chopp M (2011) TGF-beta1 promotes motility and invasiveness of glioma cells through activation of ADAM17. Oncol Rep 25(5):1329–1335

    CAS  PubMed Central  PubMed  Google Scholar 

  297. Fang S, Pentinmikko N, Ilmonen M, Salven P (2012) Dual action of TGF-beta induces vascular growth in vivo through recruitment of angiogenic VEGF-producing hematopoietic effector cells. Angiogenesis 15(3):511–519

    Article  CAS  PubMed  Google Scholar 

  298. Powell AA, Talasaz AH, Zhang H et al (2012) Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 7(5), e33788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  299. Vasir B, Borges V, Wu Z, Grosman D, Rosenblatt J, Irie M, Anderson K, Kufe D, Avigan D (2005) Fusion of dendritic cells with multiple myeloma cells results in maturation and enhanced antigen presentation. Br J Haematol 129(5):687–700

    Article  CAS  PubMed  Google Scholar 

  300. Zheng R, Shu S (2011) Immune response to cancer and its regulation in regional lymph nodes. J Surg Oncol 103(6):550–554

    Article  CAS  PubMed  Google Scholar 

  301. Yeheskely-Hayon D, Minai L, Golan L, Dann EJ, Yelin D (2013) Cell fusion: optically induced cell fusion using bispecific nanoparticles (small 22/2013). Small 9(22):3770

    Article  CAS  Google Scholar 

  302. Mou Y, Xie H, Huang X, Han W, Ni Y, Su H, Wang Z, Hu Q (2013) Immunological suppression of head and neck carcinoma by dendritic cell tumor fusion vaccine. Oncol Lett 6(6):1799–1803

    CAS  PubMed Central  PubMed  Google Scholar 

  303. Mohamed YS, Dunnion D, Teobald I, Walewska R, Browning MJ (2012) In vitro evaluation of human hybrid cell lines generated by fusion of B-lymphoblastoid cells and ex vivo tumour cells as candidate vaccines for haematological malignancies. Vaccine 30(46):6578–6587

    Article  CAS  PubMed  Google Scholar 

  304. Cathelin D, Nicolas A, Bouchot A, Fraszczak J, Labbe J, Bonnotte B (2011) Dendritic cell-tumor cell hybrids and immunotherapy: what’s next? Cytotherapy 13(7):774–785

    Article  CAS  PubMed  Google Scholar 

  305. Shu S, Cochran AJ, Huang RR, Morton DL, Maecker HT (2006) Immune responses in the draining lymph nodes against cancer: implications for immunotherapy. Cancer Metastasis Rev 25(2):233–242

    Article  PubMed  Google Scholar 

  306. Treilleux I, Blay JY, Bendriss-Vermare N et al (2004) Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res 10(22):7466–7474

    Article  CAS  PubMed  Google Scholar 

  307. Branham-O’Connor M, Li J, Kotturi HS, Yu X, Wagner TE, Wei Y (2010) Fusion induced reversal of dendritic cell maturation: an altered expression of inflammatory chemokine and chemokine receptors in dendritomas. Oncol Rep 23(2):545–550

    PubMed  Google Scholar 

  308. Strobl H, Knapp W (1999) TGF-beta1 regulation of dendritic cells. Microbes Infect 1(15):1283–1290

    Article  CAS  PubMed  Google Scholar 

  309. Weber F, Byrne SN, Le S, Brown DA, Breit SN, Scolyer RA, Halliday GM (2005) Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol Immunother 54(9):898–906

    Article  CAS  PubMed  Google Scholar 

  310. Donovan D, Harmey JH, Toomey D, Osborne DH, Redmond HP, Bouchier-Hayes DJ (1997) TGF beta-1 regulation of VEGF production by breast cancer cells. Ann Surg Oncol 4(8):621–627

    Article  CAS  PubMed  Google Scholar 

  311. Shih SC, Ju M, Liu N, Mo JR, Ney JJ, Smith LE (2003) Transforming growth factor beta1 induction of vascular endothelial growth factor receptor 1: mechanism of pericyte-induced vascular survival in vivo. Proc Natl Acad Sci U S A 100(26):15859–15864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  312. Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, Proksch E, de Strooper B, Hartmann D, Saftig P (2005) ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci U S A 102(26):9182–9187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  313. Huang J, Bridges LC, White JM (2005) Selective modulation of integrin-mediated cell migration by distinct ADAM family members. Mol Biol Cell 16(10):4982–4991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  314. Mochizuki S, Okada Y (2007) ADAMs in cancer cell proliferation and progression. Cancer Sci 98(5):621–628

    Article  CAS  PubMed  Google Scholar 

  315. Pan Y, Han C, Wang C, Hu G, Luo C, Gan X, Zhang F, Lu Y, Ding X (2012) ADAM10 promotes pituitary adenoma cell migration by regulating cleavage of CD44 and L1. J Mol Endocrinol 49(1):21–33

    Article  CAS  PubMed  Google Scholar 

  316. Hirakawa S (2009) From tumor lymphangiogenesis to lymphvascular niche. Cancer Sci 100(6):983–989

    Article  CAS  PubMed  Google Scholar 

  317. Weiss L, Ward PM (1983) Cell detachment and metastasis. Cancer Metastasis Rev 2(2):111–127

    Article  CAS  PubMed  Google Scholar 

  318. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    Article  CAS  PubMed  Google Scholar 

  319. Hart IR, Talmadge JE, Fidler IJ (1981) Metastatic behavior of a murine reticulum cell sarcoma exhibiting organ-specific growth. Cancer Res 41(4):1281–1287

    CAS  PubMed  Google Scholar 

  320. Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D, Jain RK (2010) Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci U S A 107(50):21677–21682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  321. Labelle M, Hynes RO (2012) The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2(12):1091–1099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  322. Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H (2008) Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321(5897):1841–1844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  323. Huh SJ, Liang S, Sharma A, Dong C, Robertson GP (2010) Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res 70(14):6071–6082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  324. Lee N, Barthel SR, Schatton T (2014) Melanoma stem cells and metastasis: mimicking hematopoietic cell trafficking? Lab Invest 94(1):13–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  325. Adams DL, Martin SS, Alpaugh RK et al (2014) Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci U S A 111(9):3514–3519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  326. Yagami-Hiromasa T, Sato T, Kurisaki T, Kamijo K, Nabeshima Y, Fujisawa-Sehara A (1995) A metalloprotease-disintegrin participating in myoblast fusion. Nature 377(6550):652–656

    Article  CAS  PubMed  Google Scholar 

  327. Huovila AP, Almeida EA, White JM (1996) ADAMs and cell fusion. Curr Opin Cell Biol 8(5):692–699

    Article  CAS  PubMed  Google Scholar 

  328. Harris HA, Murrills RJ, Komm BS (1997) Expression of meltrin-alpha mRNA is not restricted to fusagenic cells. J Cell Biochem 67(1):136–142

    Article  CAS  PubMed  Google Scholar 

  329. Abe E, Mocharla H, Yamate T, Taguchi Y, Manolagas SC (1999) Meltrin-alpha, a fusion protein involved in multinucleated giant cell and osteoclast formation. Calcif Tissue Int 64(6):508–515

    Article  CAS  PubMed  Google Scholar 

  330. Miller JB (1995) Developmental biology. Making one cell from two. Nature 377(6550):575–576

    Article  CAS  PubMed  Google Scholar 

  331. Nath D, Slocombe PM, Webster A, Stephens PE, Docherty AJ, Murphy G (2000) Meltrin gamma(ADAM-9) mediates cellular adhesion through alpha(6)beta(1)integrin, leading to a marked induction of fibroblast cell motility. J Cell Sci 113(Pt 12):2319–2328

    CAS  PubMed  Google Scholar 

  332. Namba K, Nishio M, Mori K, Miyamoto N, Tsurudome M, Ito M, Kawano M, Uchida A, Ito Y (2001) Involvement of ADAM9 in multinucleated giant cell formation of blood monocytes. Cell Immunol 213(2):104–113

    Article  CAS  PubMed  Google Scholar 

  333. Thodeti CK, Frohlich C, Nielsen CK et al (2005) Hierarchy of ADAM12 binding to integrins in tumor cells. Exp Cell Res 309(2):438–450

    Article  CAS  PubMed  Google Scholar 

  334. Lafuste P, Sonnet C, Chazaud B, Dreyfus PA, Gherardi RK, Wewer UM, Authier FJ (2005) ADAM12 and alpha9beta1 integrin are instrumental in human myogenic cell differentiation. Mol Biol Cell 16(2):861–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  335. Micocci KC, Martin AC, Montenegro Cde F, Durante AC, Pouliot N, Cominetti MR, Selistre-de-Araujo HS (2013) ADAM9 silencing inhibits breast tumor cell invasion in vitro. Biochimie 95(7):1371–1378

    Article  CAS  PubMed  Google Scholar 

  336. Roy R, Rodig S, Bielenberg D, Zurakowski D, Moses MA (2011) ADAM12 transmembrane and secreted isoforms promote breast tumor growth: a distinct role for ADAM12-S protein in tumor metastasis. J Biol Chem 286(23):20758–20768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  337. Rao VH, Kandel A, Lynch D, Pena Z, Marwaha N, Deng C, Watson P, Hansen LA (2012) A positive feedback loop between HER2 and ADAM12 in human head and neck cancer cells increases migration and invasion. Oncogene 31(23):2888–2898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  338. Lazova R, Laberge GS, Duvall E et al (2013) A melanoma brain metastasis with a donor-patient hybrid genome following bone marrow transplantation: first evidence for fusion in human cancer. PLoS One 8(6), e66731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  339. Dittmar T, Schwitalla S, Seidel J, Haverkampf S, Reith G, Meyer-Staeckling S, Brandt BH, Niggemann B, Zanker KS (2011) Characterization of hybrid cells derived from spontaneous fusion events between breast epithelial cells exhibiting stem-like characteristics and breast cancer cells. Clin Exp Metastasis 28(1):75–90

    Article  CAS  PubMed  Google Scholar 

  340. Dittmar T, Seidel J, Zaenker KS, Niggemann B (2006) Carcinogenesis driven by bone marrow-derived stem cells. Contrib Microbiol 13:156–169

    Article  PubMed  Google Scholar 

  341. Larizza L, Schirrmacher V, Pfluger E (1984) Acquisition of high metastatic capacity after in vitro fusion of a nonmetastatic tumor line with a bone marrow-derived macrophage. J Exp Med 160(5):1579–1584

    Article  CAS  PubMed  Google Scholar 

  342. Dezentje DA, Arking DE, Kortenhorst MS, West K, Chakravarti A, Kern SE (2009) Hybrids of aneuploid human cancer cells permit complementation of simple and complex cancer defects. Cancer Biol Ther 8(4):347–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  343. Man YG, Mason J, Harley R, Kim YH, Zhu K, Gardner WA (2011) Leukocyte-mediated cell dissemination and metastasis: findings from multiple types of human tumors. J Cell Biochem 112(4):1154–1167

    Article  CAS  PubMed  Google Scholar 

  344. Mi R, Pan C, Bian X, Song L, Tian W, Cao F, Yin J, Peng H, Ma J (2012) Fusion between tumor cells enhances melanoma metastatic potential. J Cancer Res Clin Oncol 138(10):1651–1658

    Article  CAS  PubMed  Google Scholar 

  345. Nagler C, Hardt C, Zanker KS, Dittmar T (2011) Co-cultivation of murine BMDCs with 67NR mouse mammary carcinoma cells give rise to highly drug resistant cells. Cancer Cell Int 11(1):21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  346. Dittmar T, Zanker KS (2011) Introduction. Adv Exp Med Biol 714:1–3

    CAS  PubMed  Google Scholar 

  347. Wendt MK, Cooper AN, Dwinell MB (2008) Epigenetic silencing of CXCL12 increases the metastatic potential of mammary carcinoma cells. Oncogene 27(10):1461–1471

    Article  CAS  PubMed  Google Scholar 

  348. Clatot F, Picquenot JM, Choussy O et al (2011) Intratumoural level of SDF-1 correlates with survival in head and neck squamous cell carcinoma. Oral Oncol 47:1062–1068

    Article  CAS  PubMed  Google Scholar 

  349. Xue TC, Han D, Chen RX, Zou JH, Wang Y, Tang ZY, Ye SL (2011) High expression of CXCR7 combined with Alpha fetoprotein in hepatocellular carcinoma correlates with extra-hepatic metastasis to lung after hepatectomy. Asian Pac J Cancer Prev 12(3):657–663

    CAS  PubMed  Google Scholar 

  350. Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, Minina S, Wilson D, Xu Q, Raz E (2008) Control of chemokine-guided cell migration by ligand sequestration. Cell 132(3):463–473

    Article  CAS  PubMed  Google Scholar 

  351. Lee E, Han J, Kim K, Choi H, Cho EG, Lee TR (2012) CXCR7, not CXCR4, mediates SDF1-induced melanocyte migration. Pigment Cell Melanoma Res 26:58–66

    Article  PubMed  CAS  Google Scholar 

  352. Lee E, Han J, Kim K, Choi H, Cho EG, Lee TR (2013) CXCR7 mediates SDF1-induced melanocyte migration. Pigment Cell Melanoma Res 26(1):58–66

    Article  CAS  PubMed  Google Scholar 

  353. Mahabaleshwar H, Boldajipour B, Raz E (2008) Killing the messenger: the role of CXCR7 in regulating primordial germ cell migration. Cell Adh Migr 2(2):69–70

    Article  PubMed Central  PubMed  Google Scholar 

  354. Moissoglu K, Majumdar R, Parent CA (2014) Cell migration: sinking in a gradient. Curr Biol 24(1):R23–R25

    Article  CAS  PubMed  Google Scholar 

  355. Zabel BA, Lewen S, Berahovich RD, Jaen JC, Schall TJ (2011) The novel chemokine receptor CXCR7 regulates trans-endothelial migration of cancer cells. Mol Cancer 10:73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  356. Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1(2):149–153

    Article  CAS  PubMed  Google Scholar 

  357. Peeters CF, de Waal RM, Wobbes T, Westphal JR, Ruers TJ (2006) Outgrowth of human liver metastases after resection of the primary colorectal tumor: a shift in the balance between apoptosis and proliferation. Int J Cancer 119(6):1249–1253

    Article  CAS  PubMed  Google Scholar 

  358. Schaefer C, Fuhrhop I, Schroeder M, Viezens L, Otten J, Fiedler W, Ruther W, Hansen-Algenstaedt N (2010) Microcirculation of secondary bone tumors in vivo: the impact of minor surgery at a distal site. J Orthop Res 28(11):1515–1521

    Article  PubMed  Google Scholar 

  359. Schaefer C, Schroeder M, Fuhrhop I, Viezens L, Otten J, Fiedler W, Ruther W, Hansen-Algenstaedt N (2011) Primary tumor dependent inhibition of tumor growth, angiogenesis, and perfusion of secondary breast cancer in bone. J Orthop Res 29(8):1251–1258

    Article  PubMed  Google Scholar 

  360. Phelps HA, Kuntz CA, Milner RJ, Powers BE, Bacon NJ (2011) Radical excision with five-centimeter margins for treatment of feline injection-site sarcomas: 91 cases (1998-2002). J Am Vet Med Assoc 239(1):97–106

    Article  PubMed  Google Scholar 

  361. Fornabaio DM, Alterman AL, Stackpole CW (1988) Metastatic dissemination of B16 melanoma: evidence that metastases can result from nonspecific trapping of disseminated tumor cells. Invasion Metastasis 8(1):1–16

    CAS  PubMed  Google Scholar 

  362. Fogelquist S, Deutsch B, Groszek L, Valle EF, Stackpole CW (1991) Hemodynamic considerations in organ and tissue patterning of B16 melanoma systemic metastasis and colonization. Invasion Metastasis 11(5):261–272

    CAS  PubMed  Google Scholar 

  363. Strell C, Entschladen F (2008) Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal 6:10

    Article  PubMed Central  PubMed  Google Scholar 

  364. Jacobs PP, Sackstein R (2011) CD44 and HCELL: preventing hematogenous metastasis at step 1. FEBS Lett 585:3148–3158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  365. Murphy P, Alexander P, Senior PV, Fleming J, Kirkham N, Taylor I (1988) Mechanisms of organ selective tumour growth by bloodborne cancer cells. Br J Cancer 57(1):19–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  366. Varani J (1982) Chemotaxis of metastatic tumor cells. Cancer Metastasis Rev 1(1):17–28

    Article  CAS  PubMed  Google Scholar 

  367. Uotani H, Yamashita I, Nagata T, Kishimoto H, Kashii Y, Tsukada K (2001) Induction of E-selectin after partial hepatectomy promotes metastases to liver in mice. J Surg Res 96(2):197–203

    Article  CAS  PubMed  Google Scholar 

  368. Sackstein R (2010) Directing stem cell trafficking via GPS. Methods Enzymol 479:93–105

    Article  CAS  PubMed  Google Scholar 

  369. Deng L, Chen N, Li Y, Zheng H, Lei Q (1806) CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta 1:42–49

    Google Scholar 

  370. Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD, Dvorak HF, Dvorak AM, Springer TA (2007) Transcellular diapedesis is initiated by invasive podosomes. Immunity 26(6):784–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  371. Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E, Zerwes HG, Rot A, Thelen M (2010) CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One 5(2):e9175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  372. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ, Kucia M, Janowska-Wieczorek A, Ratajczak J (2010) Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24(5):976–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  373. Li C, Kong Y, Wang H, Wang S, Yu H, Liu X, Yang L, Jiang X, Li L (2009) Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. J Hepatol 50(6):1174–1183

    Article  CAS  PubMed  Google Scholar 

  374. Ratajczak MZ, Kim CH, Abdel-Latif A, Schneider G, Kucia M, Morris AJ, Laughlin MJ, Ratajczak J (2011) A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 26:63–72

    Article  PubMed  CAS  Google Scholar 

  375. Moll NM, Ransohoff RM (2010) CXCL12 and CXCR4 in bone marrow physiology. Expert Rev Hematol 3(3):315–322

    Article  CAS  PubMed  Google Scholar 

  376. Schulz C, von Andrian UH, Massberg S (2009) Hematopoietic stem and progenitor cells: their mobilization and homing to bone marrow and peripheral tissue. Immunol Res 44(1–3):160–168

    Article  PubMed  Google Scholar 

  377. Alix-Panabieres C, Riethdorf S, Pantel K (2008) Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res 14(16):5013–5021

    Article  CAS  PubMed  Google Scholar 

  378. Sacanna E, Ibrahim T, Gaudio M et al (2011) The role of CXCR4 in the prediction of bone metastases from breast cancer: a pilot study. Oncology 80(3–4):225–231

    Article  CAS  PubMed  Google Scholar 

  379. Aoki Y, Shimura H, Li H, Mizumoto K, Date K, Tanaka M (1999) A model of port-site metastases of gallbladder cancer: the influence of peritoneal injury and its repair on abdominal wall metastases. Surgery 125(5):553–559

    Article  CAS  PubMed  Google Scholar 

  380. Brundell S, Ellis T, Dodd T, Watson DI, Hewett PJ (2002) Hematogenous spread as a mechanism for the generation of abdominal wound metastases following laparoscopy. Surg Endosc 16(2):292–295

    Article  CAS  PubMed  Google Scholar 

  381. Lee JY, Murphy SM, Scanlon EF (1994) Effect of trauma on implantation of metastatic tumor in bone in mice. J Surg Oncol 56(3):178–184

    Article  CAS  PubMed  Google Scholar 

  382. Sampson WI (1976) Letter: Cancer at insulin injection site. JAMA 235(4):374

    Article  CAS  PubMed  Google Scholar 

  383. Skipper D, Jeffrey MJ, Cooper AJ, Taylor I, Alexander P (1988) Preferential growth of bloodborne cancer cells in colonic anastomoses. Br J Cancer 57(6):564–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  384. Worthy TS, Wynne EJ (1960) Metastatic carcinoma at the site of injection of penicillin. Br Med J 2(5207):1208–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  385. Crowley JD, Still WJ (1960) Metastatic carcinoma at the site of injection of iron-dextran complex. Br Med J 1(5183):1411–1412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Parris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parris, G.E. (2015). Cell-Cell Fusion, Chemotaxis and Metastasis. In: Kandouz, M. (eds) Intercellular Communication in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7380-5_9

Download citation

Publish with us

Policies and ethics