Skip to main content

Abstract

This chapter reviews the issues of confinement in plain and reinforced concrete under concentric compression and summarizes the state of the art regarding the available confinement models for strength and stress-strain behaviour of encased confined concrete, and the corresponding magnitude of dependable strain capacity. The mechanisms of confinement failure, the evolution of Poissons’ effects under low and high confinement, and the ensuing material compaction at high confining pressures (plastification) are discussed. The effects of stress concentrations near corners, the effectiveness of layers and influence of adhesive, other scale effects and the influence of specimen morphology on mechanical behaviour are also outlined. Next, the chapter concentrates on the effects of embedded reinforcement both longitudinal and transverse. Confinement effectiveness in the presence of combined flexure and shear (in plastic hinge regions), local effects due to rotation capacity increase, and effects of FRP confinement on overall member behaviour are discussed. Shape effects that occur in hollow or oblong sections are also considered. Furthermore, the chapter gives an outline regarding the characteristics of the international database of tests for confinement, and its calibration with the database of the available confinement models including those included in the design standards (ACI, CNR and EC8-III).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACI Committee 440 (2002), Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, ACI 440.2R-02 (July 2002), American Concrete Institute, Farmington Hills, Michigan.

    Google Scholar 

  • Albanesi, T., Nuti, C., & Vanzi, I. (2007). Closed form constitutive relationship for concrete filled FRP tubes under compression. Construction and Building Materials, 21(2), 409–427.

    Google Scholar 

  • American Concrete Institute (2008). Guide for the design and construction of externally bonded FRP systems for strengthening of concrete structure. ACI 440.2R-08, Farmington Hill, Mich., USA.

    Google Scholar 

  • Arduini, M., Di Tommaso, A., Manfroni, O., Ferrari, S., & Romagnolo, M. (1999). Il confinamento passivo di elementi compressi in calcestruzzo con fogli di materiale composito. L’Industria Italiana del Cemento, 836–841 (in Italian).

    Google Scholar 

  • Berthet, J. F., Ferrier, E., & Hamelin, P. (2005). Compressive behaviour of concrete externally confined by composite jackets. Part A: Experimental study. Construction and Building Materials, 19(3), 223–232.

    Article  Google Scholar 

  • Bournas, D. A., & Triantafillou, T. C. (2011). Bond strength of lap spliced bars in concrete confined with composite materials. ASCE Journal of Composites for Construction, 15(2), 156–167.

    Article  Google Scholar 

  • Braga, F., Laterza, M., Gigliotti, R., Dragonetti, G., & Nigro, D. (2004). Prove di compressione ciclica su pilastri in c.a. confinati con staffe e/o con tessuti in fibra di carbonio. XI National Congress “L’Ingegneria sismica in Italia” (in Italian).

    Google Scholar 

  • Campione, G. (2006). Influence of FRP wrapping techniques on the compressive behaviour of concrete prisms. Cement and Concrete Composites, 28, 497–505.

    Article  Google Scholar 

  • Campione, G., & Miraglia, N. (2003). Strength and strain capacities of concrete compression members reinforced with FRP. Cement and Concrete Composites, 25(1), 31–41.

    Google Scholar 

  • Carey, S. A., & Harries, K. A. (2005). Axial behaviour and modeling of confined small, medium, and large-scale circular sections with carbon fiber-reinforced polymer jackets. ACI Structural Journal, 102(4), 596–604.

    Google Scholar 

  • Chaallal, O., Shahawy, M., & Hassa, M. (2003). Performance of axially loaded short rectangular columns strengthened with carbon FRP wrapping. Journal of Composites for Construction, 7(3), 200–208.

    Article  Google Scholar 

  • CNR—Italian Research Council, Advisory Committee on Technical Recommendations for Construction (2004). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures. Materials, RC and PC Structures, Masonry Structures (CNR-DT 200/2004), Rome, Italy.

    Google Scholar 

  • De Lorenzis, L., & Tepfers, R. (2003). Comparative study of models on confinement of concrete cylinders with fiber reinforced polymer composites. ASCE Journal of Composites for Construction, 7(3), 219–237.

    Article  Google Scholar 

  • De Luca, A., Nardone, F., Lignola, G. P., Prota, A., & Nanni, A. (2013). Wall-like reinforced concrete columns externally confined by means of glass FRP laminates. Advances in Structural Engineering, 16(4), 593–603.

    Article  Google Scholar 

  • De Luca, A., Nardone, F., Matta, F., Nanni, A., Lignola, G. P., & Prota, A. (2011). Structural evaluation of full-scale FRP-confined reinforced concrete columns. ASCE Journal of Composites for Construction, 15(1), 112–123.

    Article  Google Scholar 

  • De Paula, R. F., Da Silva, M. G. (2002). Sharp edge effects on FRP confinement of RC square columns. 3rd International Conference on Composites in Infrastructure.

    Google Scholar 

  • Demers, M., & Neale, K. W. (1999). Confinement of reinforced concrete columns with fibre-reinforced composite sheets—an experimental study. Canadian Journal of Civil Engineering, 26, 226–241.

    Article  Google Scholar 

  • Di Ludovico, M., Lignola, G. P., Prota, A., & Cosenza, E. (2010). Non linear analysis of cross sections under axial load and biaxial bending. ACI Structural Journal, 107(4), 390–399.

    Google Scholar 

  • EC8-III (2005). EN 1998-3 (2005): Eurocode 8: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings. Brussels: European Committee for Standardization-CEN.

    Google Scholar 

  • ElGawady, M., Endeshaw, M., McLean, D., & Sack, R. (2010). Retrofitting of rectangular columns with deficient lap splices. ASCE Journal of Composites for Construction, 14(1), 22–35.

    Article  Google Scholar 

  • Elwi, A. A., & Murray, D. W. (1979). A 3-D hypoelastic concrete constitutive relationship. ASCE Journal of Engineering Mechanics Division, 105(4), 623–641.

    Google Scholar 

  • Esfahani M. R., Kianoush M. R. (2004). Axial compressive strength of reinforced concrete columns wrapped with FRP. 1st Conference on Application of FRP Composites in Construction and Rehabilitation of Structures. May 4, Tehran, Iran.

    Google Scholar 

  • Fahmy, M. F. M., & Wu, Z. (2010). Evaluating and proposing models of circular concrete columns confined with different FRP composites. Composites, Part B, 41(3), 199–213.

    Google Scholar 

  • Fardis, M. N., & Khalili, H. (1981). Concrete encased in fibreglass-reinforced-plastic. Journal of the American Concrete Institute, 78(6), 440–446.

    Google Scholar 

  • Fardis, M. N., & Khalili, H. (1982). Concrete encased in fibreglass-reinforced-plastic. ACI Structural Journal, Title No. 78–38, Nov.–Dec., 1981, 440–446.

    Google Scholar 

  • fĂ©dĂ©ration internationale du bĂ©ton (2001). Externally bonded FRP reinforcement for RC structures. Bullettin No. 14, Lausanne, Switzerland.

    Google Scholar 

  • fĂ©dĂ©ration internationale du bĂ©ton (2012). fib Model Code 2010 Final Draft, Bulletin 65, International Federation for Structural Concrete, Lausanne, Switzerland.

    Google Scholar 

  • Feng, P., Lu, X. Z., & Ye, L. P. (2002). Experimental research and finite element analysis of square concrete columns confined by FRP sheets under uniaxial compression. 17th Australian Conference on the Mechanics of Structures and Materials (ACMSM17) (pp. 71–76). Gold Coast, Australia, 12–14 June.

    Google Scholar 

  • Giamundo, V., Lignola, G., Prota, A., Manfredi, G. (2014). Analytical evaluation of FRP wrapping effectiveness in restraining reinforcement bar buckling. ASCE Journal of Structural Engineering, 140(7).

    Google Scholar 

  • Girgin, Z. C. (2009). Modified failure criterion to predict ultimate strength of circular columns confined by different materials. ACI Structural Journal, 106(6), 800–809.

    Google Scholar 

  • Harajli, M. H., & Dagher, F. (2008). Seismic strengthening of bond-critical regions in rectangular reinforced concrete columns using fiber-reinforced polymer wraps. ACI Structural Journal, 105(1), 68–77.

    Google Scholar 

  • Harajli, M. H. (2006). Axial stress–strain relationship for FRP confined circular and rectangular concrete columns. Cement and Concrete Composites, 28, 938–948.

    Article  Google Scholar 

  • Harajli, M. H., Hantouche, E., & Soudki, K. (2006). Stress-strain model for fiber-reinforced polymer jacketed concrete columns. ACI Structural Journal, 103(5), 672–680.

    Google Scholar 

  • Harmon, T. G., Slattery, K. T. (1992). Advanced composite confinement of concrete. 1st International Conference on Advanced Composite Materials in Bridges and Structures (pp. 299–306). Sherbrooke, QuĂ©bec, Canada.

    Google Scholar 

  • Harries, K. A., & Carey, S. A. (2003). Shape and “gap” effects on the behaviour of variably confined concrete. Cement and Concrete Research, 33, 881–190.

    Article  Google Scholar 

  • Hosseini, A., & Fadaee, S. (2004). Behaviour of high strength square concrete columns strengthened with carbon fiber reinforced polymers (CFRP). 1st conference on application of FRP composites in construction and rehabilitation of structures, Tehran, Iran.

    Google Scholar 

  • Ilki, A., & Kumbasar, N. (2003). Compressive behaviour of carbon fibre composite jacketed concrete with circular and non circular cross-section. Journal of Earthquake Engineering, 7(3), 381–406.

    Google Scholar 

  • Ilki, A., Peker, O., Karamuk, E., Demir, C., & Kumbasar, N. (2008). FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns. ASCE Journal of Materials in Civil Engineering, 20(2), 169–188.

    Article  Google Scholar 

  • Jiang, T., & Teng, J.G. (2007). Analysis-oriented models for FRP-confined concrete: a comparative assessment. Engineering Structures, 29(11), 2968–2986.

    Google Scholar 

  • KAN.EPE (2012). Greek Code for Retrofitting of Reinforced Concrete Structures. www.oasp.gr.

  • Karbhari, V. M., & Gao, Y. (1997). Composite jacketed concrete under uniaxial compression—verification of simple design equations. Journal of Materials in Civil Engineering, 9(4), 185–193.

    Google Scholar 

  • Kawashima, K., Hosotani, M., Yoneda, K. (2000). Carbon fiber sheet retrofit of reinforced concrete bridge piers. International Workshop on Annual Commemoration of Chi-Chi Earthquake, Vol. II-Technical Aspect, National Center for Research on Earthquake Engineering (pp. 124–135), Taipei, Taiwan.

    Google Scholar 

  • Kono, S., Inazumi, M., & Kaku, T. (1998). Evaluation of confining effects of CFRP sheets on reinforced concrete members. 2nd International Conference on Composites in Infrastructure ICCI’98 (pp. 343–355), 5–7 January, Tucson, Arizona, 343–355.

    Google Scholar 

  • Kumutha, R., Vaidyanathan. R., & Palanichamy, M. S. (2007). Behaviour of reinforced concrete rectangular columns strengthened using GFRP. Cement and Concrete Composites, 29, 609–615.

    Google Scholar 

  • Kupfer, H., & Gerstle, K. H. (1973). Behavior of concrete under biaxial stresses. ASCE Journal of Engineering Mechanics, 99(4), 853–866.

    Google Scholar 

  • Lam, L., & Teng, J. G. (2003). Design-oriented stress-strain model for frp-confined concrete. Construction and Building Materials, 17, 471–489.

    Article  Google Scholar 

  • Li, Y., Fang, T., Chern, C. (2003). A constitutive model for concrete cylinder confined by steel reinforcement and carbon fibre sheet. Pacific Conference on Earthquake Engineering.

    Google Scholar 

  • Lignola, G. P., Giamundo, V., Prota, A., Manfredi G. (2013b). FRP wrapping of RC members under combined axial load and bending. 11th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures FRPRCS11 2013, GuimarĂŁes, Portugal, June 26–28, 2013.

    Google Scholar 

  • Lignola, G. P., Nardone, F., Prota, A., & Manfredi, G. (2012). Analytical model for the effective strain in FRP-wrapped circular RC columns. ELSEVIER Composites: Part B, 43(8), 3208–3218.

    Google Scholar 

  • Lignola, G. P., Nardone, F., Prota, A., De Luca, A. & Nanni, A. (2011b). Analysis of RC hollow columns strengthened with GFRP. ASCE Journal of Composites for Construction, 15(4), 545–556

    Google Scholar 

  • Lignola, G. P., Prota, A. & Manfredi G. (2013a). Simplified modeling of FRP wrapping of rectangular cross-sections. 2nd International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures SMAR 2013. Istanbul, Turkey September 2013. Paper ID 158.

    Google Scholar 

  • Lignola, G. P., Prota, A., Manfredi, G., & Cosenza, E. (2008). Unified theory for confinement of RC solid and hollow circular columns. ELSEVIER Composites: Part B, 39(7–8), 1151–1160.

    Google Scholar 

  • Lignola, G. P., Prota, A., Manfredi, G., & Cosenza, E. (2009). Non linear modeling of RC hollow piers confined with CFRP. ELSEVIER Composite Structures, 88(1), 56–64.

    Article  Google Scholar 

  • Lignola, G. P., Prota, A., Manfredi, G. & Cosenza E. (2011a). Modeling of RC wall-like columns FRP confinement. 1st Middle East Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures SMAR 2011, Dubai, UAE, Paper ID 125:1–8.

    Google Scholar 

  • Lin, J. L., & Liao, C. I. (2004). Compressive strength of reinforced concrete column confined by composite material. Composite Structures, 65, 239–250.

    Article  Google Scholar 

  • Lura, P., Plizzari, G., & Riva, P. (2002). 3D finite-element modelling of splitting crack propagation. Magazine of Concrete Research, 54(6), 481–493.

    Article  Google Scholar 

  • Maalej, M., Tanwongsval, S., & Paramasivam, P. (2003). Modelling of rectangular columns strengthened with FRP. Cement and Concrete Composites, 25, 263–276.

    Article  Google Scholar 

  • Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress-strain model for confined concrete. ASCE Journal of Structural Engineering, 114(8), 1804–1826.

    Article  Google Scholar 

  • Matthys, S. (2000). Structural behaviour and design of concrete members strengthened with externally bonded frp reinforcement. Doctoral thesis, Ghent University, pp. 1–367.

    Google Scholar 

  • Matthys, S., Toutanji, H., Audenaert, K., & Taerwe, L. (2005). Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites. ACI Structural Journal, 102(2), 258–267.

    Google Scholar 

  • Matthys, S., Toutanji, H., & Taerwe, L. (2006). Stress-strain behaviour of large-scale circular columns confined with FRP composites. ASCE Journal of Structural Engineering, 132(1), 123–133.

    Article  Google Scholar 

  • Matthys, S., Taerwe, L., & Audenaert, K. (1999). Tests on axially loaded concrete columns confined by fiber reinforced polymer sheet wrapping. 4th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures (pp. 217–228).

    Google Scholar 

  • Megalooikonomou G. K., Monti G., & Santini S. (2011). Constitutive model for FRP and tie—confined concrete. 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2011). Corfu, Greece.

    Google Scholar 

  • Micelli, F., Myers, J. J., & Murthy, S. (2001). Effect of environmental cycles on concrete cylinders confined with FRP. CCC2001 International Conference on Composites in Construction. October 10–12, Porto, Portugal.

    Google Scholar 

  • Mirmiran, A., Shahawy, M., Samaan, M., El Echary, H., Mastrapa, J. C., & Pico, O. (1998). Effect of column parameters on FRP-confined concrete. ASCE Journal of Composites for Construction, 2(4), 175–185.

    Article  Google Scholar 

  • Miyauchi, K., Nishibayashi, S., Inoue, S. (1997). Estimation of strengthening effects with carbon fiber sheet for concrete column. 3rd International Symposium (FRPRCS-3) on Non-Metallic (FRP) reinforcement for Concrete Structures (pp. 217–224). 14–16 October, Sapporo, Japan.

    Google Scholar 

  • Monti, G., & Nuti, C. (1992). Nonlinear cyclic behavior of reinforcing bars including buckling. Journal of Structural Engineering, 118(12), 3268–3284.

    Google Scholar 

  • Mukherjee, A., Boothby, T. E., Bakis, C. E., Joshi, M. V., & Maitra, S. R. (2004). Mechanical behaviour of fiber reinforced polymer-wrapped concrete columns-complicating effects. ASCE Journal of Composites for Construction, 8(2), 97–103.

    Article  Google Scholar 

  • Ozbakkaloglu, T., Lim, J. C., & Vincent, T. (2013). FRP-confined concrete in circular sections: Review and assessment of stress–strain models. Elsevier Engineering Structures, 49, 1068–1088.

    Article  Google Scholar 

  • Parretti, R., & Nanni, A. (2002). Axial testing of concrete columns confined with carbon FRP: effect of fiber orientation. Proc. ICCI 2002, Hardback, Netherlands.

    Google Scholar 

  • Parvin, A., & Wang, W. (2002). Concrete columns confined by fiber composite wraps under combined axial and cyclic lateral loads. Composite Structures, 58, 539–549.

    Article  Google Scholar 

  • Pellegrino, C., & Modena, C. (2010). Analytical model for FRP confinement of concrete columns with and without internal steel reinforcement. ASCE Journal of Composites of Construction, 14(6), 693–705.

    Article  Google Scholar 

  • Pellegrino, C., Tinazzi, D., Modena, C. (2004). Sul confinamento di elementi in c.a. soggetti a compressione. AICAP National Congress 2004, 26–29 Maggio, Verona, Italy (in Italian).

    Google Scholar 

  • Pessiki, S., Harries, K. A., Kestner, J. T., Sause, R., & Ricles, J. M. (2001). Axial behaviour of reinforced concrete columns confined with FRP jackets. ASCE Journal of Composites of Construction, 5(4), 237–245.

    Article  Google Scholar 

  • Picher, F., Rochette, P., & LaboissiĂ©re, P. (1996). Confinement of concrete cylinders with CFRP. 1st Conference on Composites in Infrastructure ICCI’96 (pp. 829–841). 15–17 January, Tucson, Arizona.

    Google Scholar 

  • Prota, A., Manfredi, G., & Cosenza, E. (2006). Ultimate behaviour of axially loaded RC wall-like columns confined with GFRP. Composites: Part B, 37, 670–678.

    Article  Google Scholar 

  • Realfonzo, R., & Napoli, A. (2011). Concrete confined by FRP systems: confinement efficiency and design strength models. Composites: Part B, 42(4), 736–755.

    Article  Google Scholar 

  • Realfonzo, R., & Napoli, A. (2013). Confining concrete members with FRP systems: predictive vs design strain models. Composite Structures, 104, 303–319.

    Article  Google Scholar 

  • Richart, F. E., Brandtzaeg, A., & Brown, R. L. (1928). A Study of the Failure of Concrete Under Combined Compressive Stresses. University of Illinois Engineering Experimental Station, Champaign, Ill, Bulletin 185

    Google Scholar 

  • Rochette, P., & LabossiĂ©re, P. (2000). Axial testing of rectangular column models confined with composites. ASCE Journal of Composites for Construction, 4(3), 129–136.

    Article  Google Scholar 

  • Rodrigues, C. C., Silva, M. (2001). Experimental investigation of CFRP reinforced concrete columns under uniaxial cyclic compression. FRPRCS5 International Conference (pp. 783–791). Cambridge.

    Google Scholar 

  • Rousakis, T. (2001). Experimental investigation of concrete cylinders confined by carbon FRP sheets, under monotonic and cyclic axial compressive load. Research report. Chalmers University of Technology, Göteborg, Sweden.

    Google Scholar 

  • Rousakis, T. C., Karabinis, A. I., & Kiousis, P. D. (2007). FRP-confined concrete members: axial compression experiments and plasticity modelling. Engineering Structures, 29(7), 1343–1353.

    Article  Google Scholar 

  • Seible, F., Priestley, M. J. N., Hegemier, G. A., & Innamorato, D. (1997). Seismic retrofit of RC columns with continuous carbon fiber jackets. ASCE Journal of Composites for Construction, 1(2), 52–62.

    Article  Google Scholar 

  • Shahawy, M., Mirmiran, A., & Beitelmann, T. (2000). Tests on modelling of carbon-wrapped concrete columns. Composite Part B: Engineering, 31, 471–480.

    Article  Google Scholar 

  • Silva, M. A. G., & Rodrigues, C. C. (2006). Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRP. ASCE Journal of Materials in Civil Engineering, 18(3), 334–342.

    Article  Google Scholar 

  • Spoelstra, M. R., & Monti, G. (1999). FRP-confined concrete model. ASCE Journal of Composites for Construction, 3(3), 143–150.

    Article  Google Scholar 

  • Tan, K. H. (2002). Strength enhancement of rectangular RC columns using FRP. ASCE Journal of Composites for Construction, 6(3), 175–183.

    Article  Google Scholar 

  • Tastani, S., & Pantazopoulou, S. J. (2003). Strength and deformation capacity of brittle r.c. members jacketed with FRP wraps. FIB Symposium on “Concrete Structures in Seismic Regions”, Athens, May 6–8.

    Google Scholar 

  • Tastani, S. P., & Pantazopoulou, S. J. (2013). Reinforcement-Concrete Bond: State Determination along the Development Length. ASCE Journal of Structural Engineering, 139(9), 1567–1581.

    Article  Google Scholar 

  • Tastani, S. P., & Pantazopoulou, S. J. (2008). Detailing procedures for seismic rehabilitation of reinforced concrete members with fiber reinforced polymers. Elsevier Engineering Structures, 30(2), 450–461.

    Article  Google Scholar 

  • Tastani, S. P., Balafas, I., Dervisis, A., & Pantazopoulou, S. J. (2013). Effect of core compaction on deformation capacity of FRP-jacketed concrete columns. Elsevier Construction and Building Materials, 47, 1078–1092.

    Article  Google Scholar 

  • Tastani, S. P., Pantazopoulou, S. J., Zdoumba, D., Plakantaras, V., & Akritidis, E. (2006). Limitations of FRP jacketing in confining old-type reinforced concrete members in axial compression. ASCE Journal of Composites for Construction, 10(1), 13–25 (erratum, October 2013).

    Google Scholar 

  • Teng, J. G., Chen, J. F., Smith, S. T., & Lam, L. (2002). FRP-strengthened RC structures. UK: John Wiley and Sons Ltd.

    Google Scholar 

  • Teng, J. G., Jiang, T., Lam, L., & Luo, Y. Z. (2009). Refinement of a design-oriented stress-strain model for FRP-confined concrete. Journal of Composites for Construction, 13(4), 269–278.

    Article  Google Scholar 

  • Teng, J. G., & Lam, L. (2004). Behaviour and modeling of fiber reinforced polymer-confined concrete. ASCE Journal of Structural Engineering., 130(11), 1713–1723.

    Article  Google Scholar 

  • Tinazzi, D., Pellegrino, C., Cadelli, G., Barbato, M., Modena, C., & Gottardo, R. (2003). An experimental study of RC columns confined with FRP sheets. Structural Faults and Repair. 10th International Conference, 1–3 July, London, UK.

    Google Scholar 

  • Toutanji, H. (1999). Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets. ACI Materials Journal, 96(3), 397–404.

    Google Scholar 

  • Vintzileou, E., & Panagiotidou, E. (2008). An empirical model for predicting the mechanical properties of FRP-confined concrete. Elsevier Construction and Building Materials, 22(5), 841–854.

    Article  Google Scholar 

  • Wang, L. M., & Wu, Y. F. (2008). Effect of corner radius on the performance of CFRP-confined square concrete columns: Test. Engineering Structures, 30(2), 493–505.

    Article  Google Scholar 

  • Watanabe, K., Nakamura, H., Honda, Y., Toyoshima, M., Iso, M., Fujimaaki, T., Kaneto, M., & Shirai, N. (1997). Confinement effect of FRP sheet on strength and ductility of concrete cylinders under uniaxial compression. 3rd International Symposium (FRPRCS-3) on Non-Metallic (FRP) Reinforcement for Concrete Structures (pp. 233–240). 14–16 October, Sapporo, Japan.

    Google Scholar 

  • Willam, K. J., & Warnke, E. P. (1975). Constitutive model for the triaxial behavior of concrete. International Association for Bridge and Structural Engineering Proceedings, 19, 1–30.

    Google Scholar 

  • Wu, H., Wang, Y., Yu, L., & Li, X. (2009). Experimental and computational studies on highstrength concrete circular columns confined by aramid fiber-reinforced polymer sheets. ASCE Journal of Composites for Construction, 13(2), 125–134.

    Article  Google Scholar 

  • Wu, Y. F., & Wang, L. M. (2009). Unified strength model for square and circular concrete columns confined by external jacket. ASCE Journal of Structural Engineering, 135(3), 253–261.

    Article  Google Scholar 

  • Wu, Y.-F., & Zhou, Y.-W. (2010). Unified strength model based on Hoek-Brown failure criterion for circular and square concrete columns confined by FRP. Journal of Composites for Construction, 14(2), 175–184.

    Google Scholar 

  • Xiao, Y., & Wu, H. (2000). Compressive behavior of concrete confined by carbon fiber composite jackets. Journal of Materials in Civil Engineering, 12(2), 139–146.

    Google Scholar 

  • Zinno, A., Lignola, G. P., Prota, A., Manfredi, G., & Cosenza, E. (2010). Influence of free edge stress concentration on effectiveness of FRP confinement. ELSEVIER Composites: Part B, 41(7), 523–532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavroula Pantazopoulou .

Editor information

Editors and Affiliations

Supplementary Material

Appendix: List of Sources for Database Specimens

Appendix: List of Sources for Database Specimens

Characteristics and experimental results for 219 FRP confined circular columns without steel reinforcement (Table 5.A-(i), in supplementary material) shown in Arduini et al. (1999), Berhet et al. (2005), Carey and Harries (2005), Harmon and Slattery (1992), Harries and Carey (2003), Kono et al. (1998), Li et al. (2003), Matthys et al. (1999), Micelli et al. (2001), Miyauchi et al. (1997), Pellegrino et al. (2004), Pessiki et al. (2001), Picher et al. (1996), Rochette and Labossiere (2000), Rousakis (2001), Shahawy et al. (2000), Silva and Rodrigues (2006), Teng and Lam (2004), Tinazzi et al. (2003), Toutanji (1999), Wang and Wu (2008), Watanabe et al. (1997) are included in the database (a).

Characteristics and experimental results for 77 FRP confined circular columns with steel reinforcement (Table 5.A-(ii), in supplementary material) shown in the works of Arduini et al. (1999), Carey and Harries (2005), Demerse and Neale (1999), Esafhani and Kianoush (2004), Ilki et al. (2008), Li et al. (2003), Lin and Liao (2004), Matthys et al. (2006), Parretti and Nanni (2002), Pellegrino et al. (2004), Pessiki et al. (2001), Rodrigues and Silva (2001), Tinazzi et al. (2003) are included in the database (b).

Characteristics and experimental results for 135 FRP confined rectangular columns without steel reinforcement (Table 5.A-(i), in supplementary material) shown in the works of Braga et al. (2004), Campione (2006), Chaallal et al. (2003), Harajli 2006, Harries and Carey (2003), Ilki and Kumbasar (2003), Mirmiran et al. (1998), Mukherjee et al. (2004), Parvin and Wang (2002), Pessiki et al. (2001), Rochette and Labossierre (2000), Rousakis et al. (2007), Wang and Wu (2008) are included in the database (c).

Characteristics and experimental results for 156 FRP confined rectangular columns with steel reinforcement (Table 5.A-(ii), in supplementary material) shown in the works of Braga et al. (2004), De Paula and Da Silva (2002), Esfahani (2004), Feng et al. (2002), Harajli et al. (2006), Hosseini and Fadaee (2004), Ilki et al. (2008), Maalej et al. (2003), Parretti and Nanni (2002), Pessiki et al. (2001), Prota et al. (2006), Tastani et al. (2006) are included in the database (d).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 RILEM

About this chapter

Cite this chapter

Pantazopoulou, S. et al. (2016). Confinement of RC Elements by Means of EBR FRP Systems. In: Pellegrino, C., Sena-Cruz, J. (eds) Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures. RILEM State-of-the-Art Reports, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7336-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7336-2_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7335-5

  • Online ISBN: 978-94-017-7336-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics