Skip to main content

Optical Properties of Ultrathin InGaN/GaN Quantum Wells Subject to Indium Surface Segregation

  • Chapter
  • First Online:
Contemporary Optoelectronics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 199))

  • 1416 Accesses

Abstract

We investigate theoretically the influence of indium surface segregation in InGaN/GaN single quantum wells on its optical properties. Obtained results show that the influence of the surface segregation on the dipole matrix element is not equal for all optical transition. This effect results from the joint action of the piezoelectric polarization and indium surface segregation which change selection rules. Quantum well structures having different indium amount are analyzed and found that the influence of the indium surface segregation on absorption spectra is more pronounced in quantum well structures with high indium amount, in particular it shall be taken into account in structures containing over 10 % of indium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Kiesel, F. Renner, M. Kneissl, N. Johnson, G. Dhler, Physica Status Solidi 188(1)

    Google Scholar 

  2. J. Piprek (ed.), Nitride Semiconductor Devices: Principles and Simulation (Wiley, New York, 2007), p. 519

    Google Scholar 

  3. I. Stanley, G. Coleiny, R. Venkat, J. Cryst. Growth 251, 23 (2003)

    Article  ADS  Google Scholar 

  4. P. Ruterana, M. Albrecht, J. Neugebauer (eds.), Nitride Semiconductors: Handbook on Materials and Devices (Wiley, New York, 2003)

    Google Scholar 

  5. D. Ehrentraut, E. Meissner, M. Bockowski (eds.), Technology of Gallium Nitride Crystal Growth (Springer, Berlin, 2010)

    Google Scholar 

  6. A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys. 94(5), 2779 (2003)

    Google Scholar 

  7. B. Witzigmann, V. Laino, M. Luisier, U.T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, V. Härle, Appl. Phys. Lett. 88(2), 021104 (2006)

    Article  ADS  Google Scholar 

  8. O. Mayrock, H.J. Wünsche, F. Henneberger, Phys. Rev. B 62, 16870–16880 (2000)

    Google Scholar 

  9. V. Potin, E. Hahn, A. Rosenauer, D. Gerthsen, B. Kuhn, F. Scholz, A. Dussaigne, B. Damilano, N. Grandjean, J. Cryst. Growth 262(1–4), 145 (2004)

    Article  ADS  Google Scholar 

  10. D. Biswas, S. Kumar, T. Das, Thin Solid Films 515(10), 4488 (2007). The Third International Conference on Materials for Advanced Technologies (ICMAT 2005)

    Google Scholar 

  11. S. Martini, A.A. Quivy, T.E. Lamas, M.J. da Silva, E.C.F. da Silva, J.R. Leite, J. Cryst. Growth 251(1–4), 101 (2003). Proceedings of the Twelfth International Conference on Molecular Beam Epitaxy

    Google Scholar 

  12. T. Li, E. Hahn, D. Gerthsen, A. Rosenauer, A. Strittmatter, L.R. Mann, D. Bimberg, Appl. Phys. Lett. 86(24), 241911 (2005)

    Article  ADS  Google Scholar 

  13. S. Pereira, M.R. Correia, E. Pereira, K.P. O’Donnell, E. Alves, A.D. Sequeira, N. Franco, I.M. Watson, C.J. Deatcher, Appl. Phys. Lett. 80(21), 3913 (2002)

    Article  ADS  Google Scholar 

  14. H. Wang, D.S. Jiang, U. Jahn, J.J. Zhu, D.G. Zhao, Z.S. Liu, S.M. Zhang, H. Yang, Thin Solid Films 518(17), 5028 (2010)

    Article  ADS  Google Scholar 

  15. M. Klymenko, O.V. Shulika, I. Sukhoivanov, IEEE J. Sel. Top. Quantum Electron. 17(5), 1374 (2011)

    Article  Google Scholar 

  16. M. Klymenko, O.V. Shulika, in 2010 10th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM) (2010), pp. 1–4

    Google Scholar 

  17. V. Lysak, H. Kawaguchi, I. Sukhoivanov, T. Katayama, A. Shulika, IEEE J. Quant. Electron. 41(6), 797 (2005)

    Article  ADS  Google Scholar 

  18. M. Klymenko, V. Lysak, I. Sukhoivanov, A. Shulika, Superlattices Microstruct. 46(4), 603 (2009)

    Article  ADS  Google Scholar 

  19. I.A. Sukhoivanov, Optic. Quant. Electron. 31, 997 (1999)

    Google Scholar 

  20. I. Sukhoivanov, O. Mashoshyna, V. Kononenko, D. Ushakov, Microelectron. J. 36(3–6), 264 (2005). Low Dimensional Structures and Devices Conference, LDSD’2004

    Google Scholar 

  21. O.V. Shulika, I.M. Safonov, I.A. Sukhoivanov, V.V. Lysak, Microelectron. J. 36(3–6), 350 (2005)

    Google Scholar 

  22. V. Lysak, I. Sukhoivanov, O. Shulika, I. Safonov, Y. Lee, IEEE Photonics Technol. Lett. 18(12), 1362 (2006)

    Article  ADS  Google Scholar 

  23. I.M. Safonov, I.A. Sukhoivanov, O.V. Shulika, V.V. Lysak, Superlattices Microstruct. 43(2), 120 (2008)

    Article  ADS  Google Scholar 

  24. M. Takeguchi, M.R. McCartney, D.J. Smith, Appl. Phys. Lett. 84(12), 2103 (2004)

    Article  ADS  Google Scholar 

  25. V. Fiorentini, F. Bernardini, O. Ambacher, Appl. Phys. Lett. 80(7), 1204 (2002)

    Article  ADS  Google Scholar 

  26. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Wiley, New York, 1991)

    Google Scholar 

  27. D.J. BenDaniel, C.B. Duke, Phys. Rev. 152, 683–692 (1966)

    Google Scholar 

  28. S.L. Chuang, C.S. Chang, Semicond. Sci. Technol. 12(3), 252 (1997)

    Article  ADS  Google Scholar 

  29. I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94(6), 3675 (2003)

    Article  ADS  Google Scholar 

  30. H. Masui, J. Sonoda, N. Pfaff, I. Koslow, S. Nakamura, S.P. DenBaars, J. Phys. D Appl. Phys. 41(16), 165105 (2008)

    Google Scholar 

  31. A. Dussaigne, B. Damilano, N. Grandjean, J. Massies, J. Cryst. Growth. 251(1–4), 471–475 (2003)

    Google Scholar 

  32. A. Saltelli, F. Campolongo, J. Cariboni, D. Gatelli, F. Pennoni, M. Ratto, M. Saisana, S. Tarantola, Global Sensitivity Analysis: A Primer (Wiley, New York, 2008)

    Google Scholar 

  33. W.W. Chow, S.W. Koch, Semiconductor Laser Fundamentals: Physics of the Gain Materials (Springer, Berlin, 1999)

    Google Scholar 

  34. J.F. Muth, J.H. Lee, I.K. Shmagin, R.M. Kolbas, J.H.C. Casey, B.P. Keller, U.K. Mishra, S.P. DenBaars, Appl. Phys. Lett. 71(18), 2572 (1997)

    Article  ADS  Google Scholar 

  35. J. Hader, J.V. Moloney, S.W. Koch, Appl. Phys. Lett. 89(17), 171120 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksiy V. Shulika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shulika, O.V., Klymenko, M.V., Sukhoivanov, I.A. (2016). Optical Properties of Ultrathin InGaN/GaN Quantum Wells Subject to Indium Surface Segregation. In: Shulika, O., Sukhoivanov, I. (eds) Contemporary Optoelectronics. Springer Series in Optical Sciences, vol 199. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7315-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7315-7_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7314-0

  • Online ISBN: 978-94-017-7315-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics