Skip to main content

Multifrequency Analysis of Brain-Computer Interfaces

  • Chapter
Recent Progress in Brain and Cognitive Engineering

Part of the book series: Trends in Augmentation of Human Performance ((TAHP,volume 5))

  • 1560 Accesses

Abstract

Modern brain computer interfaces (BCI) rely on an extensive use of machine learning and signal processing techniques. This review will focus on an important prerequisite, namely spectral preprocessing. In particular, the optimal usage of multiple frequency features for BCI is discussed in general along with the commonly employed tricks for frequency choice. This is linked to the underlying physiology. Finally, applications of the multifrequency framework are given: (a) to BCI in general and (b) for analysing the BCI illiterates phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These authors contributed equally.

  2. 2.

    Event-related desynchronization/Event-related synchronization.

  3. 3.

    Basically, any variants of the standard CSP [8, 16, 43, 44] can be used for this.

References

  1. Alamgir M, Grosse-Wentrup M, Altun Y (2010) Multitask learning for brain-computer interfaces. In: AISTATS’10: 13th international conference on articial intelligence and statistics, May 2010. MIT Press, Cambridge, pp 17–24. http://jmlr.csail.mit.edu/proceedings/papers/v9/

  2. Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: IEEE international joint conference on neural networks (IJCNN). IEEE, Piscataway, pp 2390–2397

    Google Scholar 

  3. Ang KK, Chin ZY, Wang C, Guan C, Zhang H (2012) Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci 6:00039. http://www.frontiersin.org/Journal/Abstract.aspx?s=763&name=neuroprosthetics&ART_DOI=10.3389/fnins.2012.00039

  4. Ang KK, Chin ZY, Zhang H, Guan C (2012) Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs. Pattern Recognit 45(6):2137–2144

    Article  Google Scholar 

  5. Bießmann F, Plis SM, Meinecke FC, Eichele T, Müller KR (2011) Analysis of multimodal neuroimaging data. IEEE Rev Biomed Eng 4:26–58

    Article  PubMed  Google Scholar 

  6. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398:297–298

    Article  CAS  PubMed  Google Scholar 

  7. Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G (2007) The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37(2):539–550. http://dx.doi.org/10.1016/j.neuroimage.2007.01.051

  8. Blankertz B, Kawanabe M, Tomioka R, Hohlefeld FU, Nikulin V, Müller KR (2008) Invariant common spatial patterns: alleviating nonstationarities in brain-computer interfacing. In: Advances in neural information processing systems. MIT Press, Cambridge, p 2008

    Google Scholar 

  9. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25(1):41–56. http://dx.doi.org/10.1109/MSP.2008.4408441

  10. Blankertz B, Sannelli C, Halder S, Hammer EM, Kübler A, Müller KR, Curio G, Dickhaus T (2010) Neurophysiological predictor of SMR-based BCI performance. Neuroimage 51(4):1303–1309. http://dx.doi.org/10.1016/j.neuroimage.2010.03.022

  11. Blankertz B, Lemm S, Treder MS, Haufe S, Müller KR (2011) Single-trial analysis and classification of ERP components – a tutorial. Neuroimage 56:814–825. http://dx.doi.org/10.1016/j.neuroimage.2010.06.048

  12. Fazli S, Dähne S, Samek W, Bießman F, Müller K-R (2015) Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based Brain-Computer Interfaces. Proc IEEE 103(6):891–906

    Article  Google Scholar 

  13. Dähne S, Bießman F, Meinecke FC, Mehnert J, Fazli S, Müller KR (2013) Integration of multivariate data streams with bandpower signals. IEEE Trans Multimed 15(5):1001–1013. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6472075&tag=1

  14. Dornhege G, del R. Millán J, Hinterberger T, McFarland D, Müller KR (eds)(2007) Toward brain-computer interfacing. MIT Press, Cambridge

    Google Scholar 

  15. Doucet A, De Freitas N, Gordon N (eds) (2001) Sequential Monte Carlo methods in practice. Springer, New York

    Google Scholar 

  16. Falzon O, Camilleri K, Muscat J (2012) The analytic common spatial patterns method for EEG-based BCI data. J Neural Eng 9(4):045009

    Article  PubMed  Google Scholar 

  17. Fazli S, Grozea C, Danóczy M, Blankertz B, Müller KR, Popescu F (2008) Ensembles of temporal filters enhance classification performance for ERD-based BCI systems. In: 4th international brain-computer interface workshop and training course. Verlag der Technischen Universität Graz, Graz

    Google Scholar 

  18. Fazli S, Popescu F, Danóczy M, Blankertz B, Müller KR, Grozea C (2009) Subject-independent mental state classification in single trials. Neural Netw 22(9):1305–1312. http://dx.doi.org/10.1016/j.neunet.2009.06.003

  19. Fazli S, Grozea C, Danóczy M, Blankertz B, Popescu F, Müller K (2009) Subject independent EEG-based BCI decoding. In: Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A (eds) Advances in neural information processing systems 22. MIT Press, Cambridge, pp 513–521

    Google Scholar 

  20. Dähne S, Bießmann F, Samek W, Haufe S, Goltz D, Gundlach C, Villringer A, Fazli S, Müller K-R (2015) Multivariate machine learning methods for fusing functional multimodal neuroimaging data. Proc IEEE 103(9):1507–1530

    Article  Google Scholar 

  21. Fazli S, Danóczy M, Schelldorfer J, Müller KR (2011) L1-penalized Linear Mixed-Effects Models for high dimensional data with application to BCI. Neuroimage 56(4):2100–2108. http://www.sciencedirect.com/science/article/pii/S1053811911003405

  22. Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic, Boston

    Google Scholar 

  23. Galán F, Nuttin M, Lew E, Ferrez P, Vanacker G, Philips J, Millán J (2008) A brain-actuated wheelchair: asynchronous and non-invasive brain–computer interfaces for continuous control of robots. Clin Neurophysiol 119(9):2159–2169

    Article  PubMed  Google Scholar 

  24. Hyvärinen A, Karhunen J, Oja E (2004) Independent component analysis, vol 46. Wiley, New York

    Google Scholar 

  25. Koles ZJ (1991) The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalogr Clin Neurophysiol 79(6):440–447

    Article  CAS  PubMed  Google Scholar 

  26. Krauledat M, Tangermann M, Blankertz B, Müller KR (2008) Towards zero training for brain-computer interfacing. PLoS ONE 3(8):e2967. http://dx.doi.org/10.1371/journal.pone.0002967

  27. Krepki R, Blankertz B, Curio G, Müller KR (2007) The Berlin brain-computer interface (BBCI)–towards a new communication channel for online control in gaming applications. Multimed Tools Appl 33(1):73–90

    Article  Google Scholar 

  28. Krepki R, Blankertz B, Curio G, Müller KR (2007) The Berlin brain-computer interface (BBCI): towards a new communication channel for online control in gaming applications. J Multimed Tools Appl 33(1):73–90. http://dx.doi.org/10.1007/s11042-006-0094-3

  29. Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, McFarland DJ, Birbaumer N, Wolpaw JR (2005) Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64(10):1775–1777

    Article  PubMed  Google Scholar 

  30. Lemm S, Blankertz B, Curio G, Müller KR (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 52:1541–1548

    Article  PubMed  Google Scholar 

  31. Lemm S, Blankertz B, Dickhaus T, Müller KR (2011) Introduction to machine learning for brain imaging. Neuroimage 56:387–399. http://dx.doi.org/10.1016/j.neuroimage.2010.11.004

  32. Lev J (1949) The point biserial coefficient of correlation. Ann Math Stat 20(1):125–126

    Article  Google Scholar 

  33. Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng 4:R1–R13

    Article  CAS  PubMed  Google Scholar 

  34. McFarland DJ, McCane LM, Wolpaw JR (1998) EEG-based communication and control: short-term role of feedback. IEEE Trans Rehabil Eng 6(1):7–11

    Article  CAS  PubMed  Google Scholar 

  35. Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Neural Netw 12(2):181–201

    Article  Google Scholar 

  36. Müller KR, Anderson CW, Birch GE (2003) Linear and non-linear methods for brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 11(2):165–169

    Article  PubMed  Google Scholar 

  37. Müller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B (2008) Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J Neurosci Methods 167(1):82–90. http://dx.doi.org/10.1016/j.jneumeth.2007.09.022

  38. Niedermeyer E, da Silva FL (2005) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  39. Nijholt A (2009) BCI for games: a ‘state of the art’ survey. In: Entertainment computing-ICEC 2008. Springer, Berlin, pp 225–228

    Google Scholar 

  40. Onose G, Grozea C, Anghelescu A, Daia C, Sinescu C, Ciurea A, Spircu T, Mirea A, Andone I, Spânu A, Popescu C, Mihaescu S, Fazli S, Danoczy M, Popescu F (2012) On the feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up. Spinal Cord 50(8):599–608. http://www.nature.com/sc/journal/vaop/ncurrent/full/sc201214a.html, open access

  41. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  CAS  PubMed  Google Scholar 

  42. Ramoser H, Müller-Gerking J, Pfurtscheller G (1998) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446

    Article  Google Scholar 

  43. Samek W, Kawanabe M, Müller KR (2014) Divergence-based framework for common spatial patterns algorithms. IEEE Rev Biomed Eng 7:50–72

    Article  PubMed  Google Scholar 

  44. Shi LC, Li Y, Sun RH, Lu BL (2011) A sparse common spatial pattern algorithm for brain-computer interface. In: Lu BL, Zhang L, Kwok J (eds) Neural information processing. Lecture notes in computer science, vol 7062. Springer, Berlin/Heidelberg, pp 725–733

    Chapter  Google Scholar 

  45. Suk HI, Lee SW (2013) A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Trans Pattern Anal Mach Intell 35(2):286–299

    Article  PubMed  Google Scholar 

  46. Suk HI, Fazli S, Mehnert J, Müller KR, Lee SW (2014) Predicting BCI subject performance using probabilistic spatio-temporal filters. PLoS One 9(2):e87056

    Article  PubMed Central  PubMed  Google Scholar 

  47. Tangermann M, Krauledat M, Grzeska K, Sagebaum M, Blankertz B, Vidaurre C, Müller KR (2009) Playing pinball with non-invasive BCI. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems 21, 8–11 Dec 2008. MIT Press, Cambridge, pp 1641–1648

    Google Scholar 

  48. Tate RF (1954) Correlation between a discrete and a continuous variable. Point-biserial correlation. Ann Math Stat 25(3):603–607

    Article  Google Scholar 

  49. Thomas K, Guan C, Lau C, Vinod A, Ang K (2009) A new discriminative common spatial pattern method for motor imagery brain-computer interfaces. IEEE Trans Biomed Eng 56(11):2730–2733

    Article  PubMed  Google Scholar 

  50. Tomioka R, Müller KR (2010) A regularized discriminative framework for EEG analysis with application to brain-computer interface. Neuroimage 49:415–432 http://dx.doi.org/10.1016/j.neuroimage.2009.07.045

  51. Tomioka R, Dornhege G, Nolte G, Aihara K, Müller K-R (2006) Optimizing spectral filters for single trial EEG classification. In: Proceedings of DAGM. Lecture notes in computer science, vol 4174. Springer, Berlin/Heidelberg, pp 414–423

    Google Scholar 

  52. Vidaurre C, Sannelli C, Müller KR, Blankertz B (2011) Co-adaptive calibration to improve BCI efficiency. J Neural Eng 8(2):025009 (8pp). http://dx.doi.org/10.1088/1741-2560/8/2/025009

  53. Vidaurre C, Sannelli C, Müller KR, Blankertz B (2011) Machine-learning based co-adaptive calibration. Neural Comput 23(3):791–816. http://dx.doi.org/10.1162/NECO_a_00089

  54. von Bünau P, Meinecke FC, Király F, Müller KR (2009) Finding stationary subspaces in multivariate time series. Phys Rev Lett 103:214101

    Article  Google Scholar 

  55. Williamson J, Murray-Smith R, Blankertz B, Krauledat M, Müller KR (2009) Designing for uncertain, asymmetric control. Interaction design for brain-computer interfaces. Int J Hum Comput Stud 67(10):827–841. http://dx.doi.org/10.1016/j.ijhcs.2009.05.009

  56. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  PubMed  Google Scholar 

  57. Zhang H, Chin Z, Ang K, Guan C, Wang C (2011) Optimum spatio-spectral filtering network for brain-computer interface. IEEE Trans Neural Netw 22(1):52–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brain Korea 21 Plus Program as well as the SGER Grant 2014055911 through the National Research Foundation of Korea funded by the Ministry of Education. This publication only reflects the authors views. Funding agencies are not liable for any use that may be made of the information contained herein. The authors acknowledge the use of some text from the prior publications [45, 46] and thank their co-authors for allowing them to use materials from prior joint publications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamac Fazli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fazli, S., Suk, HI., Lee, SW., Müller, KR. (2015). Multifrequency Analysis of Brain-Computer Interfaces. In: Lee, SW., Bülthoff, H., Müller, KR. (eds) Recent Progress in Brain and Cognitive Engineering. Trends in Augmentation of Human Performance, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7239-6_4

Download citation

Publish with us

Policies and ethics