Skip to main content

Mechanisms of Rubber Toughening

  • Chapter
Toughened Plastics

Part of the book series: Materials Science Series ((MASCSE))

Abstract

How do small quantities of rubber produce such dramatic increases in the fracture resistance of brittle plastics? What is the mechanism of rubber toughening? The answer to these fundamental questions is far from obvious. The first satisfactory theory of toughening was advanced in 1964, almost 40 years after Ostromislensky’s original discovery, and 15 years after the commercial introduction of HIPS. Since 1964, the subject has developed to the stage at which quantitative theories can be constructed, but there are still many outstanding questions concerning the relationship between structure and fracture resistance. This chapter presents some of the qualitative and quantitative theories of rubber toughening, and discusses the problems that remain unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.F. Parsons and E. L. Suck, ACS Adv. Chem. Ser. 99 (1971) 340.

    Article  Google Scholar 

  2. M. Baer, J. Appl. Polymer Sci. 16 (1972) 1109.

    Article  Google Scholar 

  3. R. E. Lavengood, L. Nicolais and M. Narkis, J. Appl. Polymer Sci. 17 (1973) 1173.

    Article  Google Scholar 

  4. R. Buchdahl and L. E. Nielsen, J. Appl. Phys. 21 (1950) 482.

    Article  Google Scholar 

  5. E. H. Merz, G. C. Claver and M. Baer, J. Poly. Sci. 22 (1956) 325.

    Article  Google Scholar 

  6. C. B. Bucknall and R. R. Smith, Polymer 6 (1965) 437.

    Article  Google Scholar 

  7. R. R Kambour, Nature 195 (1962) 1299.

    Article  Google Scholar 

  8. J. P. Berry, J. Poly. Sci. 50 (1961) 107.

    Article  Google Scholar 

  9. H. D. Moskowitz and D. T. Turner, J. Appl. Polymer Sci. 18 (1974) 143.

    Article  Google Scholar 

  10. C B. Bucknall, I. C. Drinkwater and W. E. Keast, Polymer 13 (1972) 115.

    Article  Google Scholar 

  11. M. Matsuo, Polymer 7 (1966) 421.

    Article  Google Scholar 

  12. R. P. Kambour and R. R. Russell, Polymer 12 (1971) 237.

    Article  Google Scholar 

  13. R. J. Seward, J. Appl. Polymer Sci. 14 (1970) 852.

    Article  Google Scholar 

  14. G. Michler, K. Gruber, G. Pohl and G. Kaestner, Plaste u Kaut 20 (1973) 756.

    Google Scholar 

  15. M. Matsuo, Poly. Engng Sci. 9 (1969) 206.

    Article  Google Scholar 

  16. T. Yoshii, Ph.D. Thesis, Cranfield, England, 1975.

    Google Scholar 

  17. S. Newman and S. Strella, J. Appl. Polymer Sci. 9 (1965) 2297.

    Article  Google Scholar 

  18. S. Strella, J. Poly. Sci. A2, 3 (1966) 527.

    Google Scholar 

  19. C. B. Bucknall, D. Clayton and W. E. Keast, J. Mater. Sci. 7 (1972) 1443.

    Article  Google Scholar 

  20. R. N. Haward, J. Mann and G. Pogany, Brit. Poly. J. 2 (1970) 209.

    Article  Google Scholar 

  21. L. E. Nielsen, D. J. Dahm, P. A. Berger, V. S. Murty and J. L. Kardos, J. Poly. Sci. (Phys.) 12(1974) 1239.

    Article  Google Scholar 

  22. C. B. Bucknall and D. Clayton, Nature (Phys. Sci.) 231 (1971) 107.

    Article  Google Scholar 

  23. C. B. Bucknall and D. Clayton, J. Mater. Sci. 7 (1972) 202.

    Article  Google Scholar 

  24. M. W. Darlington and D. W. Saunders, J. Phys. E3 (1970) 511.

    Google Scholar 

  25. M. W. Darlington and D. W. Saunders, in Structure and Properties of Oriented Polymers, I. M. Ward (ed.), Applied Science, London, 1975, p. 326.

    Chapter  Google Scholar 

  26. L. C. Cessna, Poly. Engng Sci. 14 (1974) 696.

    Article  Google Scholar 

  27. P. J. Fenelon and J. R. Wilson, ACS Div. Org. Coat. Plast. Prepr. 34(2) (1974) 326.

    Google Scholar 

  28. G. Goldbach and G. Rehage, J. Poly. Sci. C16 (1967) 2289.

    Article  Google Scholar 

  29. J. D. Ferry, Viscoelastic Properties of Polymers, 2nd edn., Wiley, New York, 1970, Chapter 18.

    Google Scholar 

  30. M. Matsuo, T. Wang and T. W. Kwei, J. Poly. Sci. A2, 10 (1972) 1085.

    Google Scholar 

  31. C. J. Page and C. B. Bucknall, unpublished results.

    Google Scholar 

  32. E. N. da C. Andrade, Proc. Roy. Soc. A84 (1910) 1.

    Article  Google Scholar 

  33. J. N. Sultan and F. J. McGarry, Poly. Engng Sci. 13 (1973) 29.

    Article  Google Scholar 

  34. J. A. Manson and R. W. Hertzberg, J. Poly. Sci. (Phys.) 11 (1973) 2483.

    Google Scholar 

  35. R. R. Durst, R. M. Griffith, A. J. Urbanic and W. J. van Essen, ACS Div. Org. Coat. Plast. Prepr. 34(2) (1974) 320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bucknall, C.B. (1977). Mechanisms of Rubber Toughening. In: Toughened Plastics. Materials Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-5349-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-5349-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-5351-7

  • Online ISBN: 978-94-017-5349-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics