Skip to main content

Energy Metabolism in the Termite and Its Gut Microbiota

  • Chapter
Termites: Evolution, Sociality, Symbioses, Ecology

Abstract

The major source of energy in all termites is carbohydrate although the nature of the carbohydrate is known only in the xylophagous termites. Lignin degradation does not appear to be important in any group of termites. All termites examined secrete their own cellulases. The site of secretion in the lower termites is the salivary glands and in the higher termites, the midgut epithelium. Lower termites harbour cellulolytic protists as do some of the higher termites. Cellulolytic bacteria are not of major importance. The major substrates used by the termite are glucose derived from cellulose breakdown and acetate derived from fermentation in the hindgut. Both aerobic and anaerobic metabolism occur in the gut. While the substrates for bacterial fermentation are largely a matter for speculation, the principal end products are acetate and CO2 with CH4 and H2 being the minor end products. Nitrogen fixation in the hindgut is significant in many termites and is a major role for the symbiotic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anklin-Mühlemann, R., et al. (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. Journal of Insect Physiology 41, 929–940.

    Google Scholar 

  2. Behal, R. H., et al. (1993) Regulation of the pyruvate dehydrogenase multienzyme complex. Annual Review ofNutrition 13, 497–520.

    CAS  Google Scholar 

  3. Benemann, J. R. (1973) Nitrogen fixation in termites. Science 181, 164–165.

    CAS  PubMed  Google Scholar 

  4. Bentley, B. L. (1984) Nitrogen fixation in termites: fate of newly fixed nitrogen. Journal of Insect Physiology 30, 653–655.

    CAS  Google Scholar 

  5. Bignell, D. E. (1981) Nutrition and digestion. In The American Cockroach, ( W.J. Bell and K.G. Adiyodi, Eds.), pp. 51–86, Chapman and Hall, London.

    Google Scholar 

  6. Blume, J. E. and Ennis, H. L. (1991) A Dictyostelium discoides cellulase is a member of a spore germination-specific gene family Journal of Biological Chemistry 266, 15432–15437.

    CAS  Google Scholar 

  7. Brauuran, A., et al. (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257, 1384–1386.

    Google Scholar 

  8. Breznak, J. A. (1994) Acetogenesis from carbon dioxide in termite guts In Acetogenesis, (H.L. Drake, Ed.), pp. 303–330, Chapman Hall, New York.

    Google Scholar 

  9. Breznak, J. A., et al. (1973) Nitrogen fixation in termites. Nature 244, 577–580.

    CAS  PubMed  Google Scholar 

  10. Breznak, J. A. and Brune, A. (1994) Role of microrganisms in the digestion of lignocellulose by termites. Annual Review of Entomology 39, 453–487.

    CAS  Google Scholar 

  11. Breznak, J. A. and Pankratz, H.. S. (1977) In situ morphology of the gut microbiota of wood eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shirakil. Applied and Environmental Microbiology 33, 406–426.

    CAS  Google Scholar 

  12. Breznak, J. A. and Switzer, J. M. (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Applied and Environmental Microbiology 52, 623–630.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Brown, I. I., et al. (1983) Utilisation of energy stored in the form of Na+ and K+ ion gradients by bacterial cells. European Journal of Biochemistry 134, 345–349.

    CAS  PubMed  Google Scholar 

  14. Brune, A. (1998) Termite guts: the world’s smallest bioreactors. Trends in Biotechnology 16, 16–21.

    CAS  Google Scholar 

  15. Brune, A, Emerson, D. and Breznak, J. A. (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Applied and Environmental Microbiology 61, 2681–2687.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Brune, A., Miambi, E. and Breznak, J. A. (1995) Metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites: the roles of oxygen and the intestinal microflora. Applied and Environmental Microbiology 61, 2688–2695.

    PubMed Central  PubMed  Google Scholar 

  17. Chappell, D. J. and Slaytor, M. (1986) Nitrogen fixation in the higher termite Nasutitermes walkeri. In Proceedings of the Eighth Australian Nitrogen Fixation Conference. Australian Institute of Agricultural Science, Adelaide, Australia.

    Google Scholar 

  18. Chararas, C. (1990) Osidases with particular reference to polysaccharidases of flagellates in termite Reticulitermes lucifugus. In Microbiology in Poecilotherms, ( R. Lésel, Ed.), pp. 87–91, Elsevier, New York.

    Google Scholar 

  19. Chararas, C., et al. (1983) Purification of three cellulases from the xylophagous larvae of Ergates faber (Coleoptera. Cerambycidae). Insect Biochemistry 13, 213–218.

    Google Scholar 

  20. Chararas, C., Lebrun, D. and Jastrabsky, M. (1984) Étude des osidases de la panse rectale de Calotermes flavicollis. Comptes Rendus des Séances de la Société de biologie et des ses Filiales 178, 136–141.

    Google Scholar 

  21. Chararas, C., Lebrun D. and Jastrabsky M. (1985) Les osidases des glandes salivaires, de l’intestin moyen d’un termite, Calotermes flavicollis et de ses flagellés symbiotes. Comptes Rendus des Séances de la Société de biologie et des ses Filiales 179, 53–58.

    CAS  Google Scholar 

  22. Chararas, C. and Noirot C. (1988) Les osidases du termite Nasutitermes lujae (Termitidae). Bulletin de la Société Zoologique de France 113, 175–180.

    Google Scholar 

  23. Clements, K. D. (1997) Fermentation and gastrointestinal microorganisms in fishes. In Gastrointestinal Microbiology Vol. 1, Gastrointestinal ecosystems and fermentations ( R.I. Mackie and B.A. White, Eds.), pp. 156–198, Chapman and Hall, New York.

    Google Scholar 

  24. Cleveland, L. R. (1925) The ability of termites to live perhaps indefinitely on a diet of pure cellulose. Biological Bulletin 48, 289–293.

    CAS  Google Scholar 

  25. Cleveland, L. R. (1925) The effects of oxygenation and starvation on the symbiosis between the termite, Termopsis, and its intestinal flagellates. Biological Bulletin 48, 309–327.

    CAS  Google Scholar 

  26. Condon, S. (1987) Responses of lactic acid bacteria to oxygen. FEMSMicrobiological Reviews 46, 269–280.

    CAS  Google Scholar 

  27. Cookson, L J (1988) The site and mechanism of 14C–lignin degradation by Nasutitermes exitiosus. Journal of Insect Physiology 34, 409–414.

    CAS  Google Scholar 

  28. Czolij, R., Slaytor, M. and O’Brien R. W. (1985) Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nasutitermitinae). Applied and Environmental Microbiology 49, 1226–1236.

    Google Scholar 

  29. Dehority, B. A. (1991) Cellulose degradation in ruminants. In Biosynthesis and Biodegradation of Cellulose ( C.H. Haigler and P.J. Weimer, Eds.), pp. 327–354, Marcel Dekker Inc., New York.

    Google Scholar 

  30. Ebert, A. and Brune, A. (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Applied and Environmental Microbiology 63, 4039–4046.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Eutick, M. L., et al. (1978) Dependence of the higher termite, Nasutitermes exitiosus and the lower termite, Coptotermes lacteus on their gut flora. Journal of Insect Physiology 24, 363–368.

    CAS  Google Scholar 

  32. French, J. R. J., Turner, G. L. and Bradbury, J. F. (1976) Nitrogen fixation by bacteria from the hind gut of termites. Journal of General Microbiology 95, 20 2206.

    Google Scholar 

  33. Ghose, T. (1987) Measurement of cellulase activities. Pure and Applied Chemistry 59, 257–268.

    CAS  Google Scholar 

  34. Gottschalk, G. (1986) Bacterial Metabolism. Springer Verlag: Berlin.

    Google Scholar 

  35. Grassé, P.-P. and Noirot, C. (1959) L’évolution de la symbiose chez les Isoptères. Experientia 15, 365–372.

    PubMed  Google Scholar 

  36. Halestrap, A. P. (1975) The mitochondrial pyruvate carrier, kinetics and specificity for substrates and inhibitors. Biochemical Journal 148, 85–96.

    CAS  PubMed  Google Scholar 

  37. Hall, J., et al. (1995) The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochemical Journal 309, 749–756.

    CAS  PubMed  Google Scholar 

  38. Hardy, R. W. F., Burns, R. C. and Holsten, R. D. (1973) Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biology and Biochemistry 5, 47–81.

    CAS  Google Scholar 

  39. Hennecke, H. (1993) The role of respiration in symbiotic nitrogen fixation. In New Horizons in Nitrogen Fixation. Proceedings of the 9th International Congress on Nitrogen Fixation ( R. Palacios, J. Mora, and W.E. Newton, Eds.), pp. 55–64, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  40. Henrissat, B. (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 280, 309–316.

    CAS  PubMed  Google Scholar 

  41. Hogan, M, et al. (1988) The site of cellulose breakdown in higher termites (Nasutitermes walkeri and Nasutitermes exitiosus). Journal of Insect Physiology 34, 891–899.

    CAS  Google Scholar 

  42. Hogan, M E, et al. (1988) Components of termite and protozoal cellulases from the lower termite, Coptotermes lacteus Froggatt. Insect Biochemistry 18, 45–51.

    CAS  Google Scholar 

  43. House, H. L. (1974) Digestion. In The Physiology of Insecta ( M. Rockstein, Ed.), pp. 63–117, Academic Press, New York.

    Google Scholar 

  44. Hungate, R. E. (1943) Quantitative analyses on the cellulose fermentation by termite protozoa. Annals of the Entomological Society of America 36, 730–739.

    CAS  Google Scholar 

  45. Inoue, T., et al. (1997) Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. Journal of Insect Physiology 43, 235–242.

    CAS  Google Scholar 

  46. Inoue, T., et al. (1998) Higher termites and cellulolytic amoeba: a new symbiotic relationship. Manuscript in preparation.

    Google Scholar 

  47. Itakura, S., Tanaka, H. and Enoki, A. (1999) Occurrence and metabolic role of the pyruvate dehydrogenase complex in the lower termite Coptotermes formosanus (Shiraki). Insect Biochemistry and Molecular Biology 29, 625–631

    CAS  Google Scholar 

  48. Koehler, S. M., Matters, G. L. and Nath, P. (1996) The gene promoter for a bean abscission cellulase is ethylene-induced in transgenic tomato and shows high sequnce conservation with a soybean abscission cellulase. Plant Molecular Biology 31, 595–606.

    CAS  PubMed  Google Scholar 

  49. Kuhnigk, T., et al. (1994) Degradation of lignin monomers by the hindgut flora of xylophagous termites. Systematic and Applied Microbiology 17, 7685.

    Google Scholar 

  50. La Fage, J. P. and Nutting, W. L. (1979) Respiratory gas exchange in the dry-wood termite, Marginitermes hubbardi (Banks) (Isoptera: Kalotermitidae). Sociobiology 4, 257–267.

    Google Scholar 

  51. Leadbetter, J. R. and Breznak, J. A. (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Applied and Environmental Microbiology 62, 3620–3631.

    CAS  Google Scholar 

  52. Lenoir-Labé, F. and Rouland, C. (1993) Purification et properties de deux osidases produites par des batteries isolées a partir du tractus digestif de Cephalotermes rectangularis (Isoptera, Termitidae). Actes Colloques UIEIS 8, 71–78.

    Google Scholar 

  53. Lovelock, M., O’Brien, R. W. and Slaytor, M. (1985) Effect of laboratory containment on the nitrogen metabolism of termites. Insect Biochemistry 15, 503–509.

    CAS  Google Scholar 

  54. Martin, M. M. (1984) The role of ingested enzymes in the digestive processes of insects. In Invertebrate-Microbial Interactions (J.M. Anderson, A.D.M. Rayner and D.W.H. Walton, Eds.), pp. 155–172, Cambridge University Press, Cambridge.

    Google Scholar 

  55. Matoub, M. and Rouland, C. (1995) Purification and properties of the xylanases from the termite Macrotermes bellcosus and its symbiotic fungus Termitomyces sp. Comparative Biochemistry and Physiology. 112B, 629–635.

    CAS  PubMed  Google Scholar 

  56. Mauldin, J. K. (1982) Lipid synthesis from [14C]-acetate by two subterranean termites, Reticulitermes flavipes and Coptotermes formosanus. Insect Biochemistry 12, 193–199.

    CAS  Google Scholar 

  57. McEwen, S. E., Slaytor, M. and O’Brien, R.W. (1980) Cellobiase activity in three species of Australian termites. Insect Biochemistry 10, 563–567.

    Google Scholar 

  58. Meinke, A., et al. (1991) Multiple domains in endoglucanase B (CenB) from Clostridium fimi: functions and relatedness to domains in other polypeptides. Journal of Bacteriology 173, 7126–7135.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Nunes, L., et al. (1997) On the respiratory quotient (RQ) of termites (Insecta: Isoptera). Journal of Insect Physiology 43, 749–758.

    CAS  PubMed  Google Scholar 

  60. O’Brian, M. R. and Maier, R. J. (1989) Molecular aspects of the energetics of nitrogen fixation in Rhizobium-legume symbioses. Biochimica Biophysica Acta 974, 229–246.

    Google Scholar 

  61. O’Brien, R. W. and Breznak, J. A. (1984) Enzymes of acetate and glucose metabolism in termites. Insect Biochemistry 14, 639–643.

    Google Scholar 

  62. Odelson, D. A. and Breznak, J. A. (1985) Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Applied and Environmental Microbiology 49, 622–626.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Odelson, D. A. and Breznak, J. A. (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous insects. Applied and Environmental Microbiology 45, 1602–1613.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Ohkuma, M. and Kudo, T. (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Applied and Environmental Microbiology 62, 461–468.

    CAS  Google Scholar 

  65. Ohkuma, M., et al. (1996) Diversity of nitrogen fixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Applied and Environmental Microbiology 62, 2747–2752.

    CAS  Google Scholar 

  66. Orlova, E. A. (1974) Influence of the intestinal symbiont complex on the intensity of food consumption and the longevity of the termites Reticulitermes. In Termites (Collected Articles) (Transactions of the Entomological Division No. 5) ( E. K. Zolotarev, Ed.), pp. 165–180, University Publishing House, Moscow.

    Google Scholar 

  67. Patel, M..S. and Roche,T. E. (1990) Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB Journal 4, 3224–3233.

    CAS  PubMed  Google Scholar 

  68. Potrikus, C. J. and Breznak, J. A. (1977) Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Applied and Environmental Microbiology 33, 392–399.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Potts, R. C. and Hewitt, P. H. (1973) The distribution of intestinal bacteria and cellulase acivity in the harvester termite Nasutitermes trinervoides (Nasutitermitinae). Insectes Sociaux 20, 215–220.

    CAS  Google Scholar 

  70. Potts, R. C. and Hewitt, P. H. (1974) The partial purification and some properties of the cellulase from the termite Trinervitermes trinervoides (Nasutermitinae). Comparative Biochemistry and Physiology 47B, 317–326.

    CAS  Google Scholar 

  71. Potts, R. C. and Hewitt, P. H. (1974) Some properties and reaction characteristics of the partially purified cellulase from the termite Trinervitermes trinervoides (Nasutitermitinae). Comparative Biochemistry and Physiology 47B, 327–337.

    CAS  Google Scholar 

  72. Prestwich, G. D. and Bentley, B. L. (1981) Nitrogen fixation by intact colonies of the termite Nasutitermes corniger. Oecologia 49, 249–251.

    Google Scholar 

  73. Prestwich, G. D., Bentley, B. L. and Carpenter, E. J. (1980) Nitrogen sources for neotropical nasute termites: fixation and selective foraging Oecologia 46, 397–401.

    Google Scholar 

  74. Robertson, J. P., Faulkner, A. and Vernon, R. G. (1980) Pyruvate dehydrogenase activity and the regulation of glucose metabolism in ruminant tissues. FEBSLetters 120, 192–194.

    CAS  Google Scholar 

  75. Rouland, C., et al. (1988) Comparaison entre les osidases du termite Macrotermes mailer’ et celles de son champignon symbiotique Termitomyces sp. Comptes Rendus des Seances. Academie des Sciences (Paris). Serie III Sciences de la Vie 306, 115–120.

    CAS  Google Scholar 

  76. Rouland, C., Chararas, C. and Renoux, J. (1986) Étude comparée des osidases de trois espèces de termites africains à régime alimentaire différent. Comptes Rendus des Seances. Academie des Sciences (Paris). Serie III. Sciences de la Vie 302, 341–345.

    CAS  Google Scholar 

  77. Rouland, C., Chararas, C. and Renoux, J. (1989) Les osidases digestives présentes dans l’intestin moyen, l’intestin postérieur et les glandes salivaires du termite humivore Crenetermes albotarsalis. Comptes Rendus des Seances. Academie des Sciences (Paris). Serie III Sciences de la Vie 308, 281–285.

    CAS  Google Scholar 

  78. Rouland, C., et al. (1988) Purification and properties of cellulases from the termite Macrotermes mülleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp. Comparative Biochemistry and Physiology 91B, 449–458.

    Google Scholar 

  79. Rouland, C., Renoux, J. and Petek, F. (1988) Purification and properties of two xylanases from Macrotermes mülleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp. Insect Biochemistry 18, 709–715.

    CAS  Google Scholar 

  80. Schafer, A., et al. (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. Journal of Applied Bacteriology 80, 471–478.

    CAS  PubMed  Google Scholar 

  81. Schultz, J. E. and Breznak, J. A. (1978) Cross-feeding of lactate between Streptococcus lactis and Bacteroides sp. isolated from termite guts. Applied and Environmental Microbiology 37, 1206–1210.

    Google Scholar 

  82. Schultz, J. E. and Breznak, J.A. (1978) Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Applied and Environmental Microbiology 35, 930–936.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Schulz, M. W,.et al. (1986) Components of cellulase from the higher termite, Nasutitermes walkeri. Insect Biochemistry 16, 929–932.

    CAS  Google Scholar 

  84. Scrivener, A.M. and Slaytor, M. (1994) Properties of the endogenous cellulase from Panesthia cribrata Saussure and purification of major endo-ß-1,4glucanase components. Insect Biochemistry and Molecular Biology 24, 223–231.

    CAS  Google Scholar 

  85. Scrivener, A. M., Slaytor, M. and Rose, H..A. (1989) Symbiont-independent digestion of cellulose and starch in Panesthia cribrata Saussure, an Australian wood-eating cockroach. Journal of Insect Physiology 35, 935–941.

    Google Scholar 

  86. Scrivener, A. M., Watanabe, H. and Noda, H. (1997) Diet and carbohydrate digestion in the yellow-spotted longicorn beetle, Psacothea hilaris. Journal of Insect Physiology 43, 1039–1052.

    CAS  Google Scholar 

  87. Scrivener, A. M., Watanabe, H. and Noda, H. (1998) Properties of digestive carbohydrase activities secreted by two cockroaches, Panesthia cribrata and Periplaneta americana. Comparative Biochemistry and Physiology 119B, 273–282.

    Google Scholar 

  88. Scrivener, A. M., Zhao, L. and Slaytor, M. (1997) Biochemical and immunological relationships between endo-ß-1,4-glucanases from cockroaches. Comparative Biochemistry and Physiology 118B, 837–843.

    Google Scholar 

  89. Slaytor, M. (1992) Cellulose digestion in termites and cockroaches; do symbionts play a role? Comparative Biochemistry and Physiology 103B, 775–784.

    Google Scholar 

  90. Slaytor, M and Chappell, D. J. (1994) Nitrogen metabolism in termites. Comparative Biochemistry and Physiology 107B, 1–10.

    Google Scholar 

  91. Slaytor, M., Veivers, P. C. and Lo, N. (1997) Aerobic and anaerobic metabolism in the higher termite Nasutitermes walkeri (Hill). Insect Biochemistry and Molecular Biology 27, 291–303.

    CAS  Google Scholar 

  92. Streeter, J. G, and Salminen, S. O. (1985) Carbon metabolism in legume nodules. In Nitrogen Fixation Research Progress, Proceedings of the 6th International Symposium on Nitrogen Fixation ( H. J. Evans, P. J. Bottomley and W. E. Newton, Eds.), Martinus Nijhoff, Dordrecht.

    Google Scholar 

  93. Terra, W. R. and Ferreira, C. (1994) Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology 109B, 1–62.

    Google Scholar 

  94. Tholen, A., Schink, B. and Brune, A. (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiology Ecology 24, 137–149.

    CAS  Google Scholar 

  95. Tokuda, G., et al. (1998) cDNA sequences and phylogeny of endo-ß-1,4-glucanases from the wood-eating higher termites, Nasutitermes takasagoensis (Shiraki) and Nasutitermes walkeri ( Hill ). Manuscript in preparation.

    Google Scholar 

  96. Tokuda, G., et al. (1997) Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-(3–1,4-glucanase. Zoological Science 14, 83–93.

    CAS  PubMed  Google Scholar 

  97. Tomme, P., Warren, R. A. J. and Gilkes, N. R. (1995) Cellulose hydrolysis by bacteria and fungi. Advances in Microbial Physiology 37, 1–81.

    CAS  PubMed  Google Scholar 

  98. Veivers, P. C., et al. (1991) Digestion, diet and polytheism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M michaelseni Sjostedt. Journai oflnsect Physiology 37, 675–682.

    CAS  Google Scholar 

  99. Veivers, P. C., et ai. (1982) Digestive enzymes of the salivary glands and gut of Mastotermes darwiniensis. Insect Biochemistry 12, 35–40.

    Google Scholar 

  100. Veivers, P. C., O’Brien. R. W. and Slaytor, M. (1982) Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing entry of ioreign bacteria. Journal of Insect Physiology 28, 947–951.

    Google Scholar 

  101. Veivers, P. C., O’Brien, R. W. and Slaytor, M. (1983) Selective defaunation of Mastotermes darwiniensis and its effects on cellulose and starch metabolism. Insect Biochemistry 13. 95–101.

    Google Scholar 

  102. Watanabe, H., et al. (1997) Site of secretion and properties of endogenous endo-13–1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochemistry and Molecular Biology 27, 305–313.

    CAS  PubMed  Google Scholar 

  103. Watanabe, H., et al. (1998) A cellulase gene of termite origin. Nature 394, 330–331.

    CAS  PubMed  Google Scholar 

  104. Wheeler, G. S. et al. (1996) Comparative respiration and methane production rates in nearctic termites. Journal of Insect Physiology 42, 799–806.

    CAS  Google Scholar 

  105. Weimer, P. J. (1991) Quantitative and semiquantitative measurements of cellulose biodegradation. In Biosynthesis and Biodegradation of Cellulose ( C.H. Haigler and P.J. Weimer, Eds.), pp. 263–291, Marcel Dekker, Inc., New York

    Google Scholar 

  106. Williams, C. M., et al. (1994) Atmospheric carbon dioxide and acetogenesis in the termite Nasutitermes walker’ Hill. Comparative Biochemistry and Physiology 107A, 113–118.

    Google Scholar 

  107. Yamaoka, I. and Nagatani, Y. (1975) Cellulose digestion system in the termite, Reticulitermes speratus (Kolbe). I. Producing sites and physiological significance of two kinds of cellulase in the worker. Zoological Magazine 84. 23–29.

    Google Scholar 

  108. Yamin, M. A. (1978) Axenic cultivation of the cellulolytic flagellate Trichomitopsis termopsidis (Cleveland) from the termite Zootermopsis. Journal of Protoz000logy 25, 535–538.

    Google Scholar 

  109. Yamin, M. A. (1981) Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211. 58–59.

    CAS  PubMed  Google Scholar 

  110. Yamin, M. A. (1980) Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis. Applied and Environmental Microbiology 39, 859–863.

    CAS  Google Scholar 

  111. Yamin, M. A. and Trager, W. (1979) Cellulolytic activity of an axenically-cultivated termite flagellate, Trichomitopsis termopsidis. Journal of General Microbiology 13, 417–420.

    Google Scholar 

  112. Yoshimura, T., et al. (1993) Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) II. Selective defaunation of protozoa and its effect on cellulose metabolism Mokuzai Gakkaishi 39, 227–230.

    CAS  Google Scholar 

  113. Yoshimura, T., et al. (1995) Cellulose metabolism of the symbiotic Protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae V. Effect of crystallinity of cellulose. Mokuzai Gakkaishi 41, 206–210.

    CAS  Google Scholar 

  114. Yoshimura, T., et al. (1996) Ingestion and decomposition of wood and cellulose by the protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) as evidenced by polarizing and transmission electron microscopy. Holzforschung 50, 99–104.

    Google Scholar 

  115. Yoshimura, T., et al. (1992) Distribution of the cellulolytic activities in the lower termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Material und Organismen 27, 273–284.

    CAS  Google Scholar 

  116. Zhang, J., et al. (1993) Diet and carbohydrase activities in three cockroaches, Geoscapheus dilatatus Saussure, Calolampra elegans Roth and Panesthia cribrata Saussure. Comparative Biochemistry and Physiology 104A, 155–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Slaytor, M. (2000). Energy Metabolism in the Termite and Its Gut Microbiota. In: Abe, T., Bignell, D.E., Higashi, M. (eds) Termites: Evolution, Sociality, Symbioses, Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3223-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3223-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5476-0

  • Online ISBN: 978-94-017-3223-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics