Skip to main content

Response of plant membranes to chilling and freezing

  • Chapter
Plant Membranes

Abstract

Chilling and freezing injuries are the major consequences of low temperature stress in plants. Chilling injury is incurred in susceptible species at temperatures above the freezing point but below a critical threshold temperature. Freezing injury is incurred as ice crystals form within the tissue although some species are more likely to recover from freezing and thawing than others. Acclimation is a developmental process in response to environmental conditions which leads to increased tolerance to low temperature stress. Chilling and freezing interfere with both photosynthetic and non-photosynthetic processes in the cell. Chilling injury leads to reduced crop yields in the field and compromised quality of harvested products during storage and handling. Freezing injury can result in plant death and unmarketable product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References and recommended reading

  • Arora, R. and Palta, J.P. 1988. In vivo perturbation of membrane-associated calcium by freeze-thaw stress in onion-bulb cells. Plant Physiol. 87: 622–628.

    CAS  Google Scholar 

  • Caldwell, C.R. 1987. Temperature-induced protein conformational changes in barley root plasma membrane-enriched microsomes. II. Intrinsic protein fluorescence. Plant Physiol. 84: 924–929.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, C.R. and Whitman, C.E. 1987. Temperature-induced protein conformational changes in barley root plasma membrane-enriched microsomes. I. Effect of temperature on membrane protein and lipid mobility. Plant Physiol. 84: 918923.

    Google Scholar 

  • Chen, T.H.H. and Gusta, L.V. 1983. Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol. 73: 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, T.-S. and Shewfelt, R.L. 1988. Effect of chilling exposure of tomatoes during subsequent ripening. J. Food Sci. 53: 1160–1162.

    Article  Google Scholar 

  • Demandre, C., Justin, A.M., Nguyen, X.V., Gawer, M., Tremolieres, A. and Mazliak, P. 1987. Molecular species of phophatidylcholine in plants. In Eds. P.K. Stumpf, J.B. Mudd and W.D. Nes. The Metabolism, Structure, and Function of Plant Lipids. pp. 273–282. Plenum Publ. Corp.

    Chapter  Google Scholar 

  • Frenkel, C. 1991. Disruption of macromolecular hydration–a possible origin of chilling destabilization of biopolymers. Trends Food Sci. Technol. 2 (2): 39–41.

    Article  CAS  Google Scholar 

  • Guye, M.G. 1988. Sterol composition in relation to chill-sensitivity in Phaseolus spp. J. Exp. Bot. 39: 1091–1096.

    Article  CAS  Google Scholar 

  • Hetherington, P.R., Broughton, H.L. and McKersie, B.D. 1988. Ice-encasement injury to microsomal membranes isolated from winter wheat crowns. II. Changes in membrane lipids during ice encasement. Plant Physiol. 86: 740–743.

    Article  PubMed  CAS  Google Scholar 

  • Hetherington, P.R., McKersie, B.D. and Borochov, A. 1987. Ice-encasement injury to microsomal membranes from winter wheat crowns. I. Comparison of membrane-properties after lethal ice encasement and during a post-thaw period. Plant Physiol. 85: 1068–1072.

    Article  PubMed  CAS  Google Scholar 

  • Hugly, S., McCourt, P., Browse, J., Patterson, G.W. and Somerville, C. 1990. A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism. Plant Physiol. 93: 1053–1062.

    Article  PubMed  CAS  Google Scholar 

  • Huner, N.P.A., Krol, M., Williams, J.P., Maissan, E. and Krupa, Z. 1989. Development at cold-hardening temperatures: Membrane assembly and organization. In: Ed. P.H. Li. Low Temperature Stress Physiology in Crops. pp. 53–65. CRC Press. Boca Raton, FL.

    Google Scholar 

  • Ishwari, S. and Palta, J.P. 1991. Plasma membrane ATPase as a key site of alteration by a freeze-thaw stress: Role in recovery and progressive injury. In: Ed. J.H. Cherry. Environmental Stress in Plants. pp. 259–265. Springer-Verlag, Berlin.

    Google Scholar 

  • Jian, L-C., Sun, L-H. and Dong, H-Z. 1982. Adaptive changes in ATPase activity in the cells of winter wheat seedlings during cold hardening. Plant Physiol. 70: 127–131.

    Article  PubMed  CAS  Google Scholar 

  • Kendall, E.J., McKersie, B.D. and Stinson, R.H. 1985. Phase properties of membranes after freezing in winter wheat. Can. J. Bot. 63: 2274–2277.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y., Cojacaru, M., Margel, S., El-Ani, D. and Landau, E.M. 1990. A biophysical study of abscisic acid interaction with membrane phospholipid components. New Phytol. 116: 487–498.

    Article  CAS  Google Scholar 

  • Levitt, J. 1962. A sulfhydryl-disulfide hypothesis of frost injury and resistance in plants. J. Theor. Biol. 3: 355–391.

    Article  CAS  Google Scholar 

  • Levitt, J. 1972. Responses of Plants to Environmental Stresses. Academic Press, New York.

    Google Scholar 

  • Levitt, J. 1980. Responses of Plants to Environmental Stresses I. Chilling, Freezing and High Temperature Stresses. Academic Press, New York.

    Google Scholar 

  • Li, G., Knowles, P.F., Murphy, D.J. and Marsh, D. 1990. Lipid-protein interactions in thylakoid membranes of chilling-resistant and -sensitive plants studied by spin label electron spin resonance spectroscopy. J. Biol. Chem. 265: 16867–16872.

    PubMed  CAS  Google Scholar 

  • Lindow, S.E. 1990. Use of genetically altered bacteria to achieve plant frost control. In: Eds. J.P. Nakas and C. Hagedorn. Biotechnology of Plant-Microbe Interactions. pp. 85–110. McGraw Hill, New York.

    Google Scholar 

  • Lindow, S.E. and Kajava, A. 1991. Personal communication.

    Google Scholar 

  • Low, P.S., Ort, D.R., Cramer, W.A., Whitmarsh, J. and Martin, B. 1984. Search for an endotherm in chloroplast lamellar membranes associated with chilling-inhibition of photosynthesis. Arch. Biochem. Biophys. 231: 336–344.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, D.V. 1990. Chilling injury in plants: the relevance of membrane lipids. In: Ed. F.R. Ketterman. Environmental Injury to Plants. pp. 17–34. Academic Press, New York.

    Google Scholar 

  • Lynch, D.V., Lepcock, J.R. and Thompson, J.E. 1987. Temperature-induced changes in lipid fluidity alter the conformation of proteins in senescing plant membranes. Plant Cell. Physiol. 28: 787–798.

    CAS  Google Scholar 

  • Lyons, J.M. 1973. Chilling injury in plants. Ann. Rev. Plant Physiol. 24:445–466. Lyons, J.M., Graham, D. and Raison, J.K. 1979. Low Temperature Stress in Crop Plants - The Role of the Membrane. Academic Press, New York.

    Google Scholar 

  • Marangoni, A.G., Smith, A.K., Yada, R.Y. and Stanley, D.W. 1989. Ultrastructural changes associated with chilling injury in mature-green tomato fruit. J. Amer. Soc. Hort. Sci. 114: 958–962.

    Google Scholar 

  • McKersie, B.D., Hoekstra, F.A. and Krieg, L.C. 1990. Differences in the susceptibility of plant membrane lipids to peroxidation. Biochim. Biophys. Acta 1030: 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Minorsky, P.V. 1985. An heuristic hypothesis of chilling injury in plants: a role for calcium as the primary physiological transducer. Plant, Cell Environ. 8: 75–94.

    Article  CAS  Google Scholar 

  • Minorsky, P.V. 1989. Temperature sensing by plants: a review and hypothesis. Plant, Cell Environ. 12: 119–135.

    Article  CAS  Google Scholar 

  • Murata, N. 1989. Low-temperature effects on cyanobacterial membranes. J. Bioen. Biomem. 21: 61–75.

    Article  CAS  Google Scholar 

  • Murata, N., Sato, N., Takahashi, N. and Hamazaki, T. 1982. Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol. 23: 1071–1079.

    CAS  Google Scholar 

  • Murata, N. and Yamaya, J. 1984. Temperature-dependent phase behavior of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Physiol. 74: 1016–1024.

    Article  PubMed  CAS  Google Scholar 

  • Parkin, K.L., Marangoni, A., Jackman, R., Yada, R. and Stanley, D. 1989. Chilling injury. A review of possible mechanisms. J. Food Biochem. 13: 127–153.

    Article  CAS  Google Scholar 

  • Pike, C.S., Norman, H.A., Kennerer, E.C., Wessner, D.R., Greenberg, C.M., Kaplan, L.J., Brodsky, N.M. and Ellis, A.A. 1990. Effects of acclimation to low temperature and to water stress on photosynthesis and on physical and chemical properties from thylakoids of cucumber and cotton. Plant Sci. 68: 189–196.

    Article  CAS  Google Scholar 

  • Platt-Aloia, K.A. and Thompson, W.W. 1987. Freeze fracture evidence for lateral phase separations in the plasmalemma of chill-injured avocado fruit. Protoplasma 136: 71–80.

    Article  Google Scholar 

  • Raison, J.K. and Lyons, J.M. 1986. Chilling injury: a plea for uniform terminology. Plant Cell Environ. 9: 685–686.

    Article  Google Scholar 

  • Raison, J.K. and Orr, G.R. 1986. Phase transitions in thylakoid polar lipids of chilling-sensitive plants. Plant Physiol. 80: 638–645.

    Article  PubMed  CAS  Google Scholar 

  • Shewfelt, R.L. and Erickson, M.E. 1991. Role of lipid peroxidation in the mechanism of membrane-associated disorders in edible plant tissue. Trends in Food Sci. Technol. 2: 152–4.

    Article  CAS  Google Scholar 

  • Singh, B.R. and Singhal, G.S. 1989. Role of surface proteins in the manifestation of temperature effect on thykaloid membranes. Biochem. Physiol. Pflanzen 185: 110.

    Google Scholar 

  • Singh, J. and Miller, R.W. 1985. Biophysical and ultrastructural studies of membrane alterations in plant cells during extracellular freezing: Molecular mechanism of membrane injury. In: Ed. K.K. Kartha. Cryopreservation of Plant Cells and Organs. pp. 61–73. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Skulachev, V.P. 1988. Membrane Bioenergetics. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Steer, M.W. 1988. Plasma membrane turnover in plant cells. J. Exp. Bot. 39: 987–996.

    Article  Google Scholar 

  • Steffen, K.L. and Palta, J.P. 1987. Photosynthesis as a key process in plant response to low temperatures, alteration during low temperature acclimation and impairment during freezer-thaw injury. In: Ed. P.H. Li. Plant Cold Hardiness. pp. 6699. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Steponkus, P.L. 1981. Responses to extreme temperatures. Cellular and sub-cellular bases. pp. 372–402. In: Eds: O.L. Lang, P.S. Nobel, C.B. Osmond and H. Ziegler. Encyclopedia of Plant Physiology New Series 12A: Physiological Plant Ecology I. Springer Verlag, New York.

    Google Scholar 

  • Steponkus, P.L. 1990. Cold acclimation and freezing injury from a perspective of the plasma membrane. In: Ed. F.R. Ketterman. Environmental Injury to Plants. pp. 1–16. Academic Press, New York.

    Google Scholar 

  • Thompson, G.A. 1989. Molecular changes in membrane lipids during cold stress. In: Ed. J.H. Cherry. Environmental Stress in Plants. Springer Verlag, Berlin.

    Google Scholar 

  • Vigh, L., Gambos, Z. and Joo, F. 1985. Selective modification of sytoplasmic membrane fluidity by catalytic hydrogenation provides evidence on its primary role in chilling susceptibility of the blue-green alga, Anacystis nidulans. FEBS Lett. 191: 200–204.

    Article  CAS  Google Scholar 

  • Whitaker, B.D. 1991. Changes in lipids of tomato fruit stored at chilling and non-chilling temperatures. Phytochemistry 30: 757–761.

    Article  CAS  Google Scholar 

  • Wise, R.R., Terashima, I. and Ort, D.R. 1990. The effect of chilling in the light on photophosphorylation. Photosyn. Res. 25: 137–139.

    Article  CAS  Google Scholar 

  • Yoshida, S. 1984. Chemical and biophysical changes in the plasma membrane during cold acclimation of mulberry bark cells (Morus bombycis Koidz. cv Goroji). Plant Phys. 76: 257–65.

    Article  CAS  Google Scholar 

  • Yoshida, S. and Uemura, M. 1990. Responses of the plasma membrane to cold acclimation and freezing stress. In: Eds. C. Larsson and C.M. Moller. The Plant Plasma Membrane. pp. 293–319. Springer Verlag, Berlin.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shewfelt, R.L. (1992). Response of plant membranes to chilling and freezing. In: Plant Membranes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2683-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2683-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4096-1

  • Online ISBN: 978-94-017-2683-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics