Skip to main content

Leafy Cotyledon Genes and the Control of Embryo Development

  • Chapter
Plant Biotechnology 2002 and Beyond

Abstract

Zygotic embryogenesis begins with the double fertilization event in which the egg cell of the female gametophyte fuses with one sperm nucleus to form the zygote, and the central cell fuses with another sperm nucleus to form the endosperm mother cell (Russell, 1993). The single-celled zygote then undergoes a series of differentiation events, resulting in the formation of a mature embryo. The basic body plan of the plant is established during the early morphogenesis phase of embryogenesis. During this period, regional specification events establish morphological domains within the developing embryo, the polarity of the embryo is expressed as a shoot-root axis, the embryonic tissue and organ systems are formed, and the rudimentary shoot and root apices develop (Goldberg et al., 1994; Jurgens, 2001; West and Harada, 1993). In seed plants, this early embryonic period is followed by the maturation phase in which the embryo acquires the ability to withstand desiccation, storage reserves in the form of proteins, lipids, and starch accumulate in the embryo and/or endosperm, and the embryo becomes metabolically quiescent as a result of desiccation (Bewley, 1997; Harada, 1997; Koornneef and Karssen, 1994). The seed generally remains in a quiescent state until environmental conditions signal the embryo to germinate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumlein, H., Misera, S., Luerben, H., Kolle, K., Horstmann, C., Wobus, U., and Muller, A. J. 1994. The FUS3 gene of Arabidopsis thaliana is a regulator of gene expression during late embryogenesis. Plant J. 6: 379–387.

    Article  Google Scholar 

  • Bewley, J. D. 1997. Seed germination and dormancy. Plant Cell 9: 1055–1066.

    Article  PubMed  CAS  Google Scholar 

  • Dodeman, V. L., Ducreux, G., and Kreis, M. 1997. Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot. 48: 1493–1509.

    Google Scholar 

  • Edwards, D., Murray, J. A. H., and Smith, A. G. 1998. Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol. 117: 1015–1022.

    Article  PubMed  CAS  Google Scholar 

  • Ezcurra, I., Wycliffe, P., Nehlin, L., Ellestrom, M., and Rask, L. 2000. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J. 24: 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, R. B., de Paiva, G., and Yadegari, R. 1994. Plant embryogenesis: zygote to seed. Science 266: 605–614.

    Article  PubMed  CAS  Google Scholar 

  • Gusmaroli, G., Tonelli, C., and Mantovani, R. 2001. Regulation of the CCAAT-binding NF-Y subunits in Arabidopsis thaliana. Gene 264: 173–185.

    Article  PubMed  CAS  Google Scholar 

  • Harada, J. J. 1997. Seed maturation and control of germination. In: Advances in Cellular and Molecular Biology of Plants, Volume 4, Cellular and Molecular Biology of Seed Development. ( B. A. Larkins, and I. K. Vasil, eds.), Kluwer Academic Publishers, Dordrecht, pp. 545–592.

    Chapter  Google Scholar 

  • Harada, J. J. 2001. Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J. Plant Physiol. 158: 405–409.

    Article  CAS  Google Scholar 

  • Harada, J. J. 2001. Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J. Plant Physiol. 17: 1405–1411.

    Google Scholar 

  • Jurgens, G. 2001. Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J. 20: 3609–3616.

    Article  PubMed  CAS  Google Scholar 

  • Kagaya, Y., Ohmiya, K., and Hattori, T. 1999. RAVI, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nuc. Acids Res. 27: 470–478.

    Google Scholar 

  • Keith, K., Kraml, M., Dengler, N. G., and McCourt, P. 1994. fusca3: a heterochronic mutation affecting late embryo development in Arabidopsis. Plant Cell 6: 589–600.

    Google Scholar 

  • Koltunow, A. M. 1993. Apomixis: Embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5: 1425–1437.

    Google Scholar 

  • Koltunow, A. M., Bicknell, R. A., and Chaudhury, A. M. 1995. Apomixis: Molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol. 108: 1345–1352.

    Google Scholar 

  • Koornneef, M., and Karssen, C. M. 1994. Seed Dormancy and Germination, in: Arabidopsis ( E. M. Meyerowitz, and C. R. Somerville, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 313–334.

    Google Scholar 

  • Lotan, T., Ohto, M., Yee, K. M., West, M. A. L., Lo, R., Kwong, R. W., Yamagishi, K., Fischer, R. L., Goldberg, R. B., and Harada, J. J. 1998. Arabidopsis LEAFY COTYLEDON! is sufficient to induce embryo development in vegetative cells. Cell 93: 1195–1205.

    Google Scholar 

  • Luerssen, H., Kirik, V., Herrmann, P., and Misera, S. 1998. FUSCA3 encodes a protein with a conserved VP I/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana.. Plant J. 15: 755–764.

    Google Scholar 

  • Maity, S. N., and de Crombrugghe, B. 1998. Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem. Sci. 23: 174–178.

    Google Scholar 

  • Mantovani, R.. 1999. The molecular biology of the CCAAT-binding factor NF-Y. Gene 239: 15–27.

    Article  PubMed  CAS  Google Scholar 

  • McCarty, D. R., Carson, C. B., Stinard, P. S., and Robertson, D. S. 1989. Molecular analysis of viviparous-I: an abscisic acid-insensitive mutant maize. Plant Cell 1: 523–532.

    PubMed  CAS  Google Scholar 

  • Meinke, D. W. 1992. A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258: 1647–1650.

    Article  PubMed  CAS  Google Scholar 

  • Meinke, D. W., Franzmann, L. H., Nickle, T. C., and Yeung, E. C. 1994. Ob, cotyledon mutants of Arabidopsis. Plant Cell 6: 1049–1064.

    Google Scholar 

  • Reidt, W., Wohlfarth, T., Ellerstroem, M., Czihal, A., Tewes, A., Ezcurra, I., Rask, L., and Baumlein, H. 2000. Gene regulation during late embryogenesis: The RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J. 21: 401–408.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, T. L. 1997. Pollen embryogenesis. Plant Mol. Biol. 33: 1–10.

    Google Scholar 

  • Russell, S. D. 1993. The egg cell: Development and role in fertilization and early embryogenesis. Plant Cell 5: 1349–1359.

    Google Scholar 

  • B., and Harada, J. J. 2001. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl. Acad. Sci. USA 98: 11806–11811.

    Google Scholar 

  • Suzuki, M., Kao, C. Y., and McCarty, D. R. 1997. The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9: 799–807.

    PubMed  CAS  Google Scholar 

  • Ulmasov, T., Hagen, G., and Guilfoyle, T. J. 1997. ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865–1868.

    Article  PubMed  CAS  Google Scholar 

  • West, M. A., and Harada, J. J. 1993. Embryogenesis in higher plants: An overview. Plant Cell 5: 1361–1369.

    Google Scholar 

  • West, M. A. L., Matsudaira Yee, K. L., Danao, J., Zimmerman, J. L., Fischer, R. L., Goldberg, R. B., and Harada, J. J. 1994. LEAFY COTYLEDON I is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6: 1731–1745.

    Google Scholar 

  • Zimmerman, J. L. 1993. Somatic embryogenesis: A model for early development in higher plants. Plant Cell 5: 1411–1423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Harada, J.J., Stone, S.L., Kwong, R.W., Lee, Hs., Kwong, L.W., Pelletier, J. (2003). Leafy Cotyledon Genes and the Control of Embryo Development. In: Vasil, I.K. (eds) Plant Biotechnology 2002 and Beyond. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2679-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2679-5_53

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6220-8

  • Online ISBN: 978-94-017-2679-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics