Skip to main content

Managing Uncertainty of Product Data

An enhancement on constraint programming techniques

  • Conference paper
Methods and Tools for Co-operative and Integrated Design

Abstract

Uncertainty is inherent to product design since a design process starts with needs defined semantically and ends with precise product and process technical specifications. Managing uncertainty of product and process data is essential to conceptual design since data are still imprecise and to concurrent engineering since it guaranties data consistency at any time and an optimal paralleling of development and production activities [1–2]. After noting the poverty of tools and techniques in conceptual design of mechanical systems, the design process is presented as a process of topological and dimensional variability narrowing. Notably, a propagation of the reduction of design variable domains must occur towards the performance domains as soon as possible and conversely, so as to respect the principles of data consistency and simultaneous engineering. Then, one briefly shows that probabilistic simulations and fuzzy inference techniques can respond in a static way to the sole management of the dimensional variability. A state-of-the-art of constraint programming (CP) techniques especially over continuous domains is performed. One believes that these latter techniques are the most promising ones, in the long term, for supporting a breakthrough to conceptual design and concurrent engineering practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eversheim W., Roggatz A., Zimmermann H.-J., Derichs T., Information management for concurrent engineering. European Journal of Operational Research, vol. 100: p. 253–265, 1997.

    Article  MATH  Google Scholar 

  2. Ward A.C., Liker J.K., Sobek D.K., Cristiano J.J., Set-based concurrent engineering and Toyota. in DETC’94, 1994.

    Google Scholar 

  3. Simon H.A., Science des systèmes - Sciences de l’artificiel. Afcet Systèmes, Paris, Dunod, 1991.

    Google Scholar 

  4. Suh N., The Principles of Design, Oxford, Oxford University Press, 1993.

    Google Scholar 

  5. Bernard-Bouissières J., Aide à l’élaboration du cahier des charges fonctionnel - Pour une meilleure expression du besoin. Collection AFNOR pratique, Paris, AFNOR, 2000.

    Google Scholar 

  6. Yannou B., Préconception de Produits. HDR thesis (Habilitation à Diriger des Recherches), Institut National Polytechnique de Grenoble, France, 2001.

    Google Scholar 

  7. Wood W.H., A view of design theory and methodology from the standpoint of design freedom. in DETC 01, 1957.

    Google Scholar 

  8. Roozenburgh N.F., Eekels J., Product Design: Fundamentals and Methods, Chichester, J. Wiley Sons, 1995.

    Google Scholar 

  9. Sam Haroud J., Faltings B., Exhaustive Search for Numerical CSPs (chap. 7), COCONUT Deliverable D1–Algo. for Solving Nonlinear Constrained and Optimization Problems, Coconut Project, p. 113–149, 2001.

    Google Scholar 

  10. Das I., An improved Technique for Choosing Parameters for Pareto Surface Generation Using Normal-Boundary Intersection. 3rd World Congress of Structural and Multidisciplinary Optimization (WCSMO-3), 411–413, 1999.

    Google Scholar 

  11. Wilson B., Cappeleri D.J., Simpson T.W., Frecker M.I., Efficient Pareto Frontier Exploration using Surrogate Approximations. American Institute of Aeronautics and Astronautics, 2001.

    Google Scholar 

  12. Otto K., Antonsson E., Propagating Imprecise Engineering Design Constraints. in IEEE International Conference on Fuzzy Systems, Yokohama, Japan, 375–382, 1993.

    Google Scholar 

  13. Yannou B., Simpson T.W., Barton R.R., NCSP in design engineering: capturing performance constraints through metamodeling approaches. in COCOS’02: 1st Int. Workshop on Global Constrained Optimization and Constraint Satisfaction, Sophia Antipolis, France, 2002.

    Google Scholar 

  14. NF-X-50–150, Analyse de la valeur, Analyse Fonctionnelle - Vocabulaire, Norme AFNOR, août 1990.

    Google Scholar 

  15. Antonsson E.K., Otto K, Imprecision in Engineering Design. Journal of Mechanical Design, 117 (B): 25–32, 1995

    Article  Google Scholar 

  16. Wood K.L., Antonsson E.K., Beck J.L., Computations with imprecise parameters in engineering design: background and theory. ASME Journal of Mechanisms, Transmissions and Automation in Design, March, 616–624, 1989.

    Google Scholar 

  17. Thurston D.L., A formal method for subjective design evaluation with multiple attributes. Research in engineering Design, vol. 3: p. 105–122, 1991.

    Article  Google Scholar 

  18. Thurston D.L., Liu T., Design Evaluation of Multiple Attributes Under Uncertainties. International Journal of Systems Automation–Research and Application (SARA), vol. 1: p. 143–159, 1991.

    Google Scholar 

  19. Otto K., Antonsson E., The Method of Imprecision Compared to Utility Theory for Design Selection Problems. in ASME/DTM ‘93: Design Theory and Methodology, 167–173, 1993.

    Google Scholar 

  20. Dong W.M., Wong F.S., Fuzzy weighted averages and implementation of the extension principle. Fuzzy Sets and Systems, p. 183–199, 1987.

    Google Scholar 

  21. Moore R.E., Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathematics, 1979.

    Google Scholar 

  22. Bartak R., Constraint Programming: In Pursuit of the Holy Grail. in WDS’99, Prague, 1999.

    Google Scholar 

  23. Janssen P., Aide à la conception: une approche basée sur la satisfaction de contraintes. PhD thesis, Université de Montpellier des Sciences et Techniques du Languedoc, France, 1990.

    Google Scholar 

  24. Shen W., Barthes J.-P., El Dashan K., Propagation de contraintes dans les systèmes de CAO en mécanique. Revue Internationale de CFAO et d’infographie, vol. 9 (1–2): p. 25–40, 1994.

    Google Scholar 

  25. Yannou B., Chapitre 19: Les apports de la programmation par contraintes en conception, in Conception de produits mécaniques: méthodes, modèles et outils, Tollenaere M. Editor, Hermes, p. 457–486, 1998.

    Google Scholar 

  26. Freuder E.C., Synthesizing constraint expressions. CACM, vol. 21 (11): p. 958–966, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  27. Hyvönen E., Constraint reasoning based on interval arithmetic: the tolerance propagation approach. Artificial Intelligence, vol. 58: p. 71–112, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  28. Jaffar J., Lassez J.-L., Constraint Logic Programming. in POPL-87: Fourteenth ACM Symposium on Principles of Programming Langages, Munich, 111–119, 1987.

    Chapter  Google Scholar 

  29. Macworth A., Consistency on networks of relations. Artificial Intelligence, vol. 8: p. 99–118, 1977.

    Article  Google Scholar 

  30. Montanari U., Networks of constraints: fundamental properties and applications to picture processing. Information Sciences, vol. 7: p. 95–132, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  31. Waltz D., Generating semantic descriptions from drawings of scenes with shadows, MIT, Massachusetts, 1972.

    Google Scholar 

  32. Fox M.S., Sycara K., Overview of CORTES: a constraint based approach to production planning, scheduling and control. in 4th Int. Conference of Expert Systems in Production and Operations Management, 1990.

    Google Scholar 

  33. Medjdoub B., Méthode de conception fonctionnelle en architecture: une approche CAO basée sur les contraintes: ARCHIPLAN. PhD thesis, Ecole Centrale Paris, France, 1996.

    Google Scholar 

  34. Medjdoub B., Yannou B., Separating Topology and Geometry in Space Planning. Computer Aided-Design, vol. 32 (1): p. 39–61, 2000.

    Article  Google Scholar 

  35. Vargas C., Modélisation du processus de conception en ingénierie des systèmes mécaniques. Mise en oeuvre basée sur le propagation de contraintes. PhD thesis, Ecole Normale Supérieure de Cachan, 1995.

    Google Scholar 

  36. Rueher M., Solnon C., Concurrent Cooperating Solvers over Reals. Reliable Computing, 3 (3): p. 325–333, 1997.

    Article  MATH  Google Scholar 

  37. Granvilliers L., Montfroy E., Benhamou F., Symbolic-Interval Cooperation (chap. 6), COCONUT Deliverable D1–Algo. for Solving Nonlinear Constrained and Optimization Problems, Coconut Project, 150–175, 2001.

    Google Scholar 

  38. Benhamou F., Mc Allester D., Van Hentenryck P., Clp(intervals) revisited. in Logic Programming, 1994.

    Google Scholar 

  39. Faltings B., Djamila H., Smith I., Dynamic Constraint Propagation with Continuous Variables. in ECAI, 1992.

    Google Scholar 

  40. Hyvönen E., Constraint reasoning based on interval arithmetic. in IJCAI-89, 1193–1198, 1999.

    Google Scholar 

  41. Lhomme O., Consistency techniques for numeric CSPs. in IJCAI-93, Chambéry, France, 232–238, 1993.

    Google Scholar 

  42. Lhomme O., Gotlieb A., Rueher M., Taillibert P., Boosting the interval narrowing algorithm. in ICLP: MIT Press, 1996.

    Google Scholar 

  43. Van Hentenryck P., Michel L., Benhamou F., Newton: Constraint Programming over Nonlinear Constraints. Science of Computer Programming, vol. 30 (1–2): p. 83–118, 1998.

    Article  MATH  Google Scholar 

  44. Merlet J-P., Projet COPRIN: Contraintes, OPtimisation, Résolution par INtervalles, INRIA report, 2001.

    Google Scholar 

  45. Granvilliers L., Benhamou F., Huens E., Constraint Propagation (chap. 5), COCONUT Deliverable D1–Algo. for Solving Nonlinear Constrained and Optimization Problems, Coconut Project, 113–149, 2001.

    Google Scholar 

  46. Lottaz C., Clément D.E., Faltings B.V., Smith I.F.C., Constraint-Based Support for Collaboration in Design and Construction. Journal of Computing in Civil Engineering, vol. 13 (1): p. 23–35, 1999.

    Article  Google Scholar 

  47. Lottaz C., Sam-Haroud D., Faltings B.V., Smith I., Constraint Techniques for Collaborative Design. in IEEE International Conference on Tools with Artificial Intelligence, 1998.

    Google Scholar 

  48. Lottaz C., Smith I.F.C., Robert-Nicoud Y., Faltings B.V., Constraint-based support for negotiation in collaborative design. Artificial Intelligence in Engineering, vol. 14: p. 261–280, 2000.

    Article  Google Scholar 

  49. Lottaz C., Stouffs R., Smith I., Increasing Understanding during Collaboration Through Advanced Representations. ITcon, vol. 5, 2000.

    Google Scholar 

  50. Finch W.W., (1999), Set-based models of product platform design and manufacturing processes. in DETC’99, 1999.

    Google Scholar 

  51. Finch W.W., Ward A.C., A set-based system for eliminating infeasible designs in engineering problems dominated by uncertainty. in DETC’97, 1997.

    Google Scholar 

  52. Fischer X., Stratégie de conduite de calcul pour l’aide à la decision en conception mécanique intégrée - Application aux appareils à pression. PhD thesis, ENSAM, France, 2000.

    Google Scholar 

  53. Kleijnen J.P.C., A Comment on Blanning’s Metamodel for Sensitivity Analysis: The Regression Metamodel in Simulation. Interfaces, vol. 5: p. 21–23, 1975.

    Article  Google Scholar 

  54. Bourne A., Clément A., Foussier A., Saulais J., Sicard M., JADE: un jeu d’outils d’aide à la décision technologique, in Outils et applications de l’intelligence artificielle en CFAO, Yvon Gardan, Hermès, p. 148–161, 1990.

    Google Scholar 

  55. Degirmenciyan I., Foussier A., Chollet P., Un conciliateur/coordinateur pour une conception simultanée. Revue de CFAO et d’informatique graphique, p. 889–911, 1994.

    Google Scholar 

  56. Zimmer L., Zlabit P., Global aircraft predesign based on constraint propagation and interval analysis. in CEAS’01: Conference on multidisciplinary Aircraft design and Optimisation, June 25–26th 2001.

    Google Scholar 

  57. Sam J., Constraint Consistency Techniques for Continuous Domains. Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, Switzerland, 1995.

    Google Scholar 

  58. Colmerauer A., An introduction to Prolog III. in Communication of the ACM, 1990.

    Google Scholar 

  59. Dincbas M., Le langage CHIP. Génie Logiciel et Systèmes Experts, vol. 19 (juin): p. 94–99, 1990.

    Google Scholar 

  60. Goualard F., Langages et environnements en programmation par contraintes. Ph.D. Thesis, Université de Nantes, France, 2000.

    Google Scholar 

  61. Benhamou F., Colmerauer A., Constraint Logic Programming: Selected Research, MIT Press, 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Yannou, B. (2004). Managing Uncertainty of Product Data. In: Tichkiewitch, S., Brissaud, D. (eds) Methods and Tools for Co-operative and Integrated Design. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2256-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2256-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6536-0

  • Online ISBN: 978-94-017-2256-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics