Skip to main content

Evidence implicating Helicobacter spp. in the pathogenesis of inflammatory bowel disease

  • Chapter
Helicobactor pylori
  • 159 Accesses

Abstract

The inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn’s disease (CD) are characterized by recurrent episodes of intestinal inflammation of unknown cause. Although clinical, genetic and pathological differences exist, it is generally agreed that both diseases are a result of an inherited predisposition expressed as an abnormal immune response to exogenous or environmental triggers. The exact nature of the defect in the immune response or the nature of the environmental trigger(s) is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fox JG, Handt L, Xu S et al. Novel Helicobacter species isolated from rhesus monkeys with chronic idiopathic colitis. J Med Microbiol. 2001; 50: 421–9.

    PubMed  CAS  Google Scholar 

  2. Patterson MM, Schrenzel MD, Feng Y et al. Helicobacter aurati sp. nov., a urease-positive Helicobacter species cultured from gastrointestinal tissues of Syrian hamsters. J Clin Microbiol. 2000; 38: 3722–8.

    PubMed  CAS  Google Scholar 

  3. Fox JG, Dewhirst FE, Tully JG et al. Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice. J Clin Microbiol. 1994; 32: 1238–45.

    PubMed  CAS  Google Scholar 

  4. Shomer NH, Dangler CA, Schrenzel MD et al. Cholangiohepatitis and inflammatory bowel disease induced by a novel urease-negative Helicobacter species in A/J and Tac:ICR:HascidfRF mice. Exp Biol Med (Maywood). 2001; 226: 420–8.

    CAS  Google Scholar 

  5. Saunders KE, Shen Z, Dewhirst FE, Paster BJ, Dangler CA, Fox JG. Novel intestinal Helicobacter species isolated from cotton-top tamarins (Saguinus oedipus) with chronic colitis (In process citation). J Clin Microbiol. 1999; 37: 146–51.

    PubMed  CAS  Google Scholar 

  6. Collins MT, Lisby G, Moser C et al. Results of multiple diagnostic tests for Mycobacterium avium subsp. paratuberculosis in patients with inflammatory bowel disease and in controls. J Clin Microbiol. 2000; 38: 4373–81.

    PubMed  CAS  Google Scholar 

  7. el Zaatari FA, Osato MS, Graham DY. Etiology of Crohn’s disease: the role of Mycobacterium avium paratuberculosis. Trends Mol Med. 2001; 7: 247–52.

    Article  PubMed  Google Scholar 

  8. Borgaonkar MR, MacIntosh DG, Fardy JM. A meta-analysis of antimycobacterial therapy for Crohn’s disease. Am J Gastroenterol. 2000; 95: 725–9.

    Article  PubMed  CAS  Google Scholar 

  9. Van Kruiningen HJ. Lack of support for a common etiology in Johne’s disease of animals and Crohn’s disease in humans. Inflamm Bowel Dis. 1999; 5: 183–91.

    Article  PubMed  Google Scholar 

  10. Ryan P, Bennett MW, Aarons S et al. PCR detection of Mycobacterium paratuberculosis in Crohn’s disease granulomas isolated by laser capture microdissection. Gut. 2002; 51: 665–70.

    Article  PubMed  CAS  Google Scholar 

  11. Duclos P, Ward BJ. Measles vaccines: a review of adverse events. Drug Saf. 1998; 19: 435–54.

    Article  PubMed  CAS  Google Scholar 

  12. Chadwick N, Bruce IJ, Schepelmann S, Pounder RE, Wakefield AJ. Measles virus RNA is not detected in inflammatory bowel disease using hybrid capture and reverse transcription followed by the polymerase chain reaction. J Med Virol. 1998; 55: 305–11.

    Article  PubMed  CAS  Google Scholar 

  13. Haga Y, Funakoshi O, Kuroe K et al. Absence of measles viral genomic sequence in intestinal tissues from Crohn’s disease by nested polymerase chain reaction. Gut. 1996; 38: 211–15.

    Article  PubMed  CAS  Google Scholar 

  14. Bernstein CN, Blanchard JF. The epidemiology of Crohn’s disease. Gastroenterology. 1999; 116: 1503–4.

    Article  PubMed  CAS  Google Scholar 

  15. Duggan AE, Usmani I, Neal KR, Logan RF. Appendicectomy, childhood hygiene, Helicobacter pylori status, and risk of inflammatory bowel disease: a case control study (See comments). Gut. 1998; 43: 494–8.

    Article  PubMed  CAS  Google Scholar 

  16. Calkins BM, Lilienfeld AM, Garland CF, Mendeloff AI. Trends in incidence rates of ulcerative colitis and Crohn’s disease. Dig Dis Sci. 1984; 29: 913–20.

    Article  PubMed  CAS  Google Scholar 

  17. Lindberg E, Lindquist B, Holmquist L, Hildebrand H. Inflammatory bowel disease in children and adolescents in Sweden, 1984–1995. J Pediatr Gastroenterol Nutr. 2000; 30: 259–64.

    Article  PubMed  CAS  Google Scholar 

  18. Binder V. Genetic epidemiology in inflammatory bowel disease. Dig Dis. 1998; 16: 351–5.

    Article  PubMed  CAS  Google Scholar 

  19. Devlin HB, Datta D, Dellipiani AW. The incidence and prevalence of inflammatory bowel disease in North Tees Health District. World J Surg. 1980; 4: 183–93.

    Article  PubMed  CAS  Google Scholar 

  20. Morris T, Rhodes J. Incidence of ulcerative colitis in the Cardiff region 1968–1977. Gut. 1984; 25: 846–8.

    Article  PubMed  CAS  Google Scholar 

  21. Lapidus A. The changing epidemiology of inflammatory bowel diseases. Acta Gastroenterol Belg. 2001; 64: 155–9.

    PubMed  CAS  Google Scholar 

  22. Munkholm P, Langholz E, Nielsen OH, Kreiner S, Binder V. Incidence and prevalence of Crohn’s disease in the county of Copenhagen, 1962–87: a sixfold increase in incidence. Scand J Gastroenterol. 1992; 27: 609–14.

    Article  PubMed  CAS  Google Scholar 

  23. Delco F, Sonnenberg A. Birth-cohort phenomenon in the time trends of mortality from ulcerative colitis. Am J Epidemiol. 1999; 150: 359–66.

    Article  PubMed  CAS  Google Scholar 

  24. Delco F, Sonnenberg A. Commonalities in the time trends of Crohn’s disease and ulcerative colitis. Am J Gastroenterol. 1999; 94: 2171–6.

    PubMed  CAS  Google Scholar 

  25. Sonnenberg A, McCarty DJ, Jacobsen SJ. Geographic variation of inflammatory bowel disease within the United States. Gastroenterology. 1991; 100: 143–9.

    PubMed  CAS  Google Scholar 

  26. Bodner C, Anderson WJ, Reid TS, Godden DJ. Childhood exposure to infection and risk of adult onset wheeze and atopy. Thorax. 2000; 55: 383–7.

    Article  PubMed  CAS  Google Scholar 

  27. Dore MP, Malaty HM, Graham DY, Fanciulli G, Delitala G, Realdi G. Risk factors associated with Helicobacter pylori infection among children in a defined geographic area. Clin Infect Dis. 2002; 35: 240–5.

    Article  PubMed  Google Scholar 

  28. Herbarth O, Krumbiegel P, Fritz GJ et al. Helicobacter pylori prevalences and risk factors among school beginners in a German urban center and its rural county. Environ Health Perspect. 2001; 109: 573–7.

    Article  PubMed  CAS  Google Scholar 

  29. Andres PG, Friedman LS. Epidemiology and the natural course of inflammatory bowel disease. Gastroenterol Clin N Am. 1999; 28: 255–81.

    Article  CAS  Google Scholar 

  30. Breslin NP, Nash C, Hilsden RJ et al. Intestinal permeability is increased in a proportion of spouses of patients with Crohn’s disease. Am J Gastroenterol. 2001; 96: 2934–8.

    Article  PubMed  CAS  Google Scholar 

  31. Tiveljung A, Soderholm JD, Olaison G, Jonasson J, Monstein HJ. Presence of eubacteria in biopsies from Crohn’s disease inflammatory lesions as determined by 16S rRNA gene-based PCR. J Med Microbiol. 1999; 48: 263–8.

    Article  PubMed  CAS  Google Scholar 

  32. Laharie D, Debeugny S, Peeters M et ul. Inflammatory bowel disease in spouses and their offspring. Gastroenterology. 2001; 120: 816–19.

    Article  PubMed  CAS  Google Scholar 

  33. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001; 411: 603–6.

    Article  PubMed  CAS  Google Scholar 

  34. Weiner HL. Oral tolerance with copolymer 1 for the treatment of multiple sclerosis. Proc Natl Acad Sci USA. 1999; 96: 3333–5.

    Article  PubMed  CAS  Google Scholar 

  35. Hampe J, Cuthbert A, Croucher PJ et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet. 2001: 357: 1925–8.

    Article  PubMed  CAS  Google Scholar 

  36. Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001; 411: 599–603.

    Article  PubMed  CAS  Google Scholar 

  37. Naumann M. Nuclear factor-kappa B activation and innate immune response in microbial pathogen infection. Biochem Pharmacol. 2000; 60: 1109–14.

    Article  PubMed  CAS  Google Scholar 

  38. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 2000; 68: 7010–17.

    Article  PubMed  CAS  Google Scholar 

  39. Kawahara T, Kuwano Y, Teshima-Kondo S et al. Toll-like receptor 4 regulates gastric pit cell responses to Helicobacter pylori infection. J Med Invest. 2001; 48: 190–7.

    PubMed  CAS  Google Scholar 

  40. Prantera C, Scribano ML. Crohn’s disease: the case for bacteria. Ital J Gastroenterol Hepatol. 1999; 31: 244–6.

    PubMed  CAS  Google Scholar 

  41. D’Haens GR, Geboes K, Peeters M, Baert F, Pennickx F, Rutgeerts P. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology. 1998; 114: 262–7.

    Article  PubMed  Google Scholar 

  42. Steinhart AH, Feagan BG, Wong CJ et al. Combined budesonide and antibiotic therapy for active Crohn’s disease: a randomized controlled trial. Gastroenterology. 2002; 123: 33–40.

    Article  PubMed  CAS  Google Scholar 

  43. Rutgeerts PJ. Conventional treatment of Crohn’s disease: objectives and outcomes. Inflamm Bowel Dis. 2001; 7: 2–8.

    Article  Google Scholar 

  44. Colombel JF, Cortot A, Van Kruiningen HJ. Antibiotics in Crohn’s disease. Gut. 2001; 48: 647.

    Article  PubMed  CAS  Google Scholar 

  45. Rath HC, Schultz M, Freitag R et al. Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice. Infect Immun. 2001; 69: 2277–85.

    Article  PubMed  CAS  Google Scholar 

  46. Masseret E, Boudeau J, Colombel JF et al. Genetically related Escherichia coli strains associated with Crohn’s disease. Gut. 2001; 48: 320–5.

    Article  PubMed  CAS  Google Scholar 

  47. Dalwadi H, Wei B, Kronenberg M, Sutton CL, Braun J. The Crohn’s disease-associated bacterial protein 12 is a novel enteric T cell superantigen. Immunity. 2001; 15: 149–58.

    Article  PubMed  CAS  Google Scholar 

  48. Huang GTJ, Eckmann L, Savidge TC, Kagnoff MF. Infection of human intestinal epithelial cells with invasive bacteria upregulates apical intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil adhesion. J Clin Invest. 1996; 98: 572–83.

    Article  PubMed  CAS  Google Scholar 

  49. Hamlet A, Borojevic R, Croitoru K. Capsaicin-induced immunomodulation results in reduced Helicobacter pylori colonization in the mouse. Gastroenterology. 2000; 118: 328.

    Article  Google Scholar 

  50. Czinn SJ, Nedrud JG. Working towards a Helicobacter pylori vaccine. Gastroenterology. 1999; 116: 990–4.

    Article  PubMed  CAS  Google Scholar 

  51. Mohammadi M, Nedrud J, Redline R, Lycke N, Czinn SJ. Murine CD4 T-cell response to Helicobacter infection: TH1 cells enhance gastritis and TH2 cells reduce bacterial load. Gastroenterology. 1997; 113: 1848–57.

    Article  PubMed  CAS  Google Scholar 

  52. Behnke JM, Cabaj W, Wakelin D. Susceptibility of adult Heligmosomoides polygyrus to intestinal inflammatory responses induced by heterologous infection. Int J Parasitol. 1992; 22: 75–86.

    Article  PubMed  CAS  Google Scholar 

  53. Croitoru K. Down-regulation of the immune response to H. pylori. In: Hunt RH, Tytgat G, editors. Helicobacter pylori: Basic Mechanisms to Clinical Cure. Lancaster: Kluwer, 1994: 333–41.

    Google Scholar 

  54. Schulick AH, Vassalli G, Dunn PF et al. Established immunity precludes adenovirusmediated gene transfer in rat carotid arteries. Potential for immunosuppression and vector engineering to overcome barriers of immunity. J Clin Invest. 1997; 99: 209–19.

    Article  PubMed  CAS  Google Scholar 

  55. Fox JG, Beck P, Dangler CA et al. Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces Helicobacter-induced gastric atrophy. Nat Med. 2000; 6: 536–42.

    Article  PubMed  CAS  Google Scholar 

  56. Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology. 1995; 109: 1344–67.

    Article  PubMed  CAS  Google Scholar 

  57. Blumberg RS, Saubermann LJ, Strober W. Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Immunol. 1999; 11: 648–56.

    Article  PubMed  CAS  Google Scholar 

  58. Dieleman LA, Arends A, Tonkonogy SL et al. Helicobacter hepaticus does not include or potentiate colitis in interleukin-l0-deficient mice. Infect Immun. 2000; 68: 5107–13.

    Article  PubMed  CAS  Google Scholar 

  59. Madsen KL, Malfair D, Gray D, Doyle JS, Jewell LD, Fedorak RN. Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric micro-flora. Inflamm Bowel Dis. 1999; 5: 262–70.

    Article  PubMed  CAS  Google Scholar 

  60. Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdrla, spontaneously develop colitis. J Immunol. 1998; 161: 5733–44.

    PubMed  CAS  Google Scholar 

  61. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993; 75: 253–61.

    Article  PubMed  CAS  Google Scholar 

  62. Cahill RJ, Foltz CJ, Fox JG, Dangler CA, Powrie F, Schauer DB. Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect Immun 1997; 65: 3126–31.

    PubMed  CAS  Google Scholar 

  63. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-l0-deficient mice develop chronic enterocolitis. Cell. 1993; 75: 263–74.

    Article  PubMed  CAS  Google Scholar 

  64. Balfour SR. The role of luminal bacteria in colitis: more than an antigenic drive. Eur J Clin Invest. 1998; 28: 1027–9.

    Article  Google Scholar 

  65. Cong Y, Brandwein SL, McCabe RP et al. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease. J Exp Med. 1998; 187: 855–64.

    Article  PubMed  CAS  Google Scholar 

  66. Satyanarayana K, Hata S, Devlin P et al. Genomic organization of the human T-cell antigen receptor alpha/delta locus. Proc Natl Acad Sci USA. 1988; 85: 8166–70.

    Article  PubMed  CAS  Google Scholar 

  67. Lifschitz C. Intestinal permeability. J Ped Gastroenterol Nutr. 1985;4:520–2.

    Google Scholar 

  68. Jitsukawa S, Triebel F, Faure F, Miossec C, Hercend T. Cloned CD3 + TeR a/ß- TiyAperipheral blood lymphocytes compared to the TiyA + counterparts: structural differences of the y/S receptor and functional heterogeneity. Eur J Immunol. 1988; 18: 1671–9.

    Article  PubMed  CAS  Google Scholar 

  69. Migone N, Casorati G, Di Celle PF, Lusso P, Foa R, Lefranc MP. Nonrandom TRGgamma variable gene rearrangement in normal human T cells and T cell leukemias. Eur J Immunol. 1988; 18: 173–8.

    Article  PubMed  CAS  Google Scholar 

  70. Foltz CJ, Fox JG, Cahill R et al. Spontaneous inflammatory bowel disease in multiple mutant mouse lines: association with colonization by Helicobacter hepaticus. Helicobacter. 1998; 3: 69–78.

    Article  PubMed  CAS  Google Scholar 

  71. Fox JG, Yan L, Shames B, Campbell J, Murphy JC, Li X. Persistent hepatitis and enterocolitis in germfree mice infected with Helicobacter hepaticus. Infect Immun. 1996; 64: 3673–81.

    PubMed  CAS  Google Scholar 

  72. Jiang HQ, Kushnir N, Thurnheer MC, Bos NA, Cebra JJ. Monoassociation of SCID mice with Helicobacter muridarum, but not four other enterics, provokes IBD upon receipt of T cells. Gastroenterology. 2002; 122: 1346–54.

    Article  PubMed  Google Scholar 

  73. Jiang HQ, Kushnir N, Thurnheer MC, Bos NA, Cebra JJ. Monoassociation of SCID mice with Helicobacter muridarum, but not four other enterics, provokes IBD upon receipt of T cells. Gastroenterology. 2002; 122: 1346–54.

    Article  PubMed  Google Scholar 

  74. Knoflach P, Vladutiu AO, Swierczynska Z, Weiser MM, Albini B. Lack of circulating immune complexes in inflammatory bowel disease. Int Arch Allergy Appl Immunol. 1986; 80: 9–16.

    Article  PubMed  CAS  Google Scholar 

  75. Ferguson A, Parrott DMV. The effect of antigen deprivation on thymus-dependent and thymus-independent lymphocytes in the small intestine of the mouse. Clin Exp Immunol. 1972; 12: 477–88.

    PubMed  CAS  Google Scholar 

  76. Maggio-Price L, Shows D, Waggie K et al. Helicobacter bilis infection accelerates and H. hepaticus infection delays the development of colitis in multiple drug resistant-deficient (mdrla —/—) mice. Am J Pathol. 2002; 160: 739–51.

    Article  PubMed  CAS  Google Scholar 

  77. Kullberg MC, Jankovic D, Gorelick PL et al. Bacteria-triggered CD4(+) T regulatory cells suppress Helicobacter hepaticus-induced colitis. J Exp Med. 2002; 196: 505–15.

    CAS  Google Scholar 

  78. Kullberg MC, Ward JM, Gorelick PL et al. Helicobacter hepaticus triggers colitis in specificpathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent mechanism. Infect Immun. 1998; 66: 5157–66.

    PubMed  CAS  Google Scholar 

  79. Fox JG. The non-H. pylori helicobacters: their expanding role in gastrointestinal and systemic diseases. Gut. 2002; 50: 273–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Streutker, C., Croitoru, K. (2003). Evidence implicating Helicobacter spp. in the pathogenesis of inflammatory bowel disease. In: Hunt, R.H., Tytgat, G.N.J. (eds) Helicobactor pylori. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1763-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1763-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5778-5

  • Online ISBN: 978-94-017-1763-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics