Skip to main content

Antagonistic pleiotropy, mutation accumulation, and human genetic disease

  • Chapter
Genetics and Evolution of Aging

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 3))

Abstract

The antagonistic pleiotropy theory of senescence is the most convincing theoretical explanation of the existence of aging. As yet, no locus or allele has been identified in a wild population with the features predicted by the pleiotropic theory. Human genetic diseases offer the opportunity to identify potentially pleiotropic alleles/loci. Four human genetic diseases — Huntington’s disease, idiopathic hemochromatosis, myotonic dystrophy, and Alzheimer’s disease — may exhibit pleiotropic effects and further study of these diseases might result in the identification of pleiotropic genes causing aging. Inability to find an early life selective benefit associated with these disease-causing alleles would favor the major alternative genetic explanation for aging, the mutation accumulation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. C., A. E. Kertesz and L. S. Valberg, 1991. Clinical presentation of hemochromatosis: a changing scene. Am. J. Med. 90: 445–449.

    PubMed  CAS  Google Scholar 

  • Adams, P. C., M. Speechley and A. E. Kertesz, 1991. Long-term survival analysis in hereditary hemochromatosis. Gastroenterology 101: 368–372.

    PubMed  CAS  Google Scholar 

  • Aslanidis, C., G. Jansen, C. Amemiya, G. Shutter, M. Mahadevan, C. Tsilfidis, C. Chen, J. Alleman, N. G. M. Wormskamp, M. Vooijs, J. Buxton, K. Johnson, H. J. M. Smeets, G. G. Lennon, A. V. Carrano, R. G. Korneluk, B. Wieringa and P. J. de Jong, 1992. Cloning of the essential myotonic dystrophy region and mapping of putative defect. Nature 355: 548–551.

    Article  PubMed  CAS  Google Scholar 

  • Borecki, I. B., G. M. Lathrop, G. E. Bonney, J. Yaouang and D. C. Rao, 1990. Combined segregation and linkage analysis of genetic hemochromatosis using affection status, serum iron, and HLA. Am. J. Hum. Genet. 47: 542–550.

    Google Scholar 

  • Bothwell, T. H., R. W. Charlton and A. G. Motulsky, 1983. Hemochromatosis, pp. 1269–1298 in The Metabolic Basis of Inherited Disease, edited by J. B. Stanbury, J. B. Wyngaarden, D. S. Frederickson, J. L. Goldstein and M. S. Brown. McGraw-Hill, New York.

    Google Scholar 

  • Breitner, J. C., 1991. Clinical genetics and genetic counseling in Alzheimer Disease. Ann. Intern. Med. 115: 601–606.

    Google Scholar 

  • Brooke, M. H., 1986. A Clinician’s View of Neuromuscular Diseases. Williams and Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Buxton, J., P. Shelbourne, J. Davies, C. Jones, T. Van Tongeren, G. Aslanidis, P. de Jong, G. Jansen, M. Anvret, B. Riley, R. Williamson and K. Johnson, 1992. Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355: 547–548.

    Article  PubMed  CAS  Google Scholar 

  • Cartwright, G. E., 1979. Hereditary hemochromatosis: phenotypic expression of the disease. New England Journal of Medicine 301: 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Clare, M. J. and L. S. Luckinbill, 1985. The effects of gene-environment interaction on the expression of longevity. Heredity 55: 19–29.

    Article  PubMed  Google Scholar 

  • Conneally, P. M., 1984. Huntington’s disease: genetics and epidemiology. American Journal of Human Genetics 36: 506–526.

    PubMed  CAS  Google Scholar 

  • Dadone, M. M., J. P. Kushner, C. Q. Edwards, D. T. Bishop and M. H. Skolnick, 1982. Hereditary hemochromatosis. Analysis of laboratory expression of the disease by genotype in 18 pedigrees. Am. J. Clin. Pathol. 78: 196–207.

    Google Scholar 

  • Finch, S. C. and C. A. Finch, 1955. Idiopathic hemochromatosis, an iron storage disease. Medicine 34: 381–430.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, N., R. Becker and A. Heller, 1988. The inheritance of Alzheimer’s disease: a new interpretation. Ann. Neurol. 23: 14–19.

    Google Scholar 

  • Folstein, S. E., 1989. Huntington’s Disease, A Disorder of Families. The Johns Hopkins University Press, Baltimore, Maryland.

    Google Scholar 

  • Goate, A., M. C. Chartier-Harlin, M. Mullan, J. Brown, F. Crawford, L. Fidani et al.,1991. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349: 704–706.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, W. D., 1966. The moulding of senescence by natural selection. Journal of Theoretical Biology 12: 12–45.

    Article  PubMed  CAS  Google Scholar 

  • Harley, H. G., J. D. Brook, J. Floyd, S. A. Rundle, S. Crow, K. V. Walsh, M. C. Thibault, P. S. Harper and D. J. Shaw, 1991. Detection of linkage disequilibrium between the myotonic dystrophy locus and a new polymorphic DNA marker. Am. J. Hum. Genetics 49: 68–75.

    Google Scholar 

  • Harley, H. G., J. D. Brook, S. A. Rundle, S. Crow, W. Reardon, A. J. Buckler, P. S. Harper, D. E. Housman and D. J. Shaw, 1992. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355: 545–546.

    Article  PubMed  CAS  Google Scholar 

  • Harper, P. S., D. A. Walker, A. Tyler, R. G. Newcombe and K. Davies, 1979. Huntington’s chorea: The basis for long-term prevention. Lancet II: 346–349.

    Google Scholar 

  • Hayden, M. R., 1981. Huntington’s Chorea. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Hutchinson, E. W. and M. R. Rose, 1991. Quantitative genetics of postponed aging in Drosophila melanogaster. I. Analysis of outbred populations. Genetics 127: 719–727.

    Google Scholar 

  • Hutchinson, E. W., A. J. Shaw and M. R. Rose, 1991. Quantitative genetics of postponed aging in Drosophila melanogaster. II. Analysis of selected lines. Genetics 127: 729–737.

    Google Scholar 

  • Kravitz, K., M. Skolnick, C. Cannings, D. Carmelli, B. Baty, B. Amos, A. Johnson, N. Mendell, C. Edwards and G. Cartwright, 1979. Genetic linkage between hereditary hemochromatosis and HLA. Am. J. Hum. Genet. 31: 601–619.

    Google Scholar 

  • Luckinbill, L. S. and M. J. Clare, 1985. Selection for life span in Drosophila melanogaster. Heredity 55: 9–18.

    Article  PubMed  Google Scholar 

  • Luckinbill, L. S., R. Arking, M. J. Clare, W. C. Cirocco and S. A. Buck, 1984. Selection for delayed senescence in Drosophila melanogaster. Evolution 38: 996–1003.

    Article  Google Scholar 

  • Marx, R. N., 1973. Huntington’s chorea in Minnesota. Advances in Neurology 1: 237–243.

    Google Scholar 

  • Mathieu, J., M. De Braekeleer and C. Prevost, 1990. Genealogical reconstruction of myotonic dystrophy in the Saguenay-LacSaint-Jean area ( Quebec, Canada) Neurology 40: 839–842.

    Google Scholar 

  • Mattson, B., 1974. Huntington’s chorea in Sweden. II. Social and clinical data. Acta Psychiatrica Scandinavica Supplementum 255: 221–235.

    Google Scholar 

  • Medawar, P. B., 1952. An Unsolved Problem in Biology. H. K. Lewis, London.

    Google Scholar 

  • Mertz, D. B., 1975. Senescent decline in flour beetle strains selected for early adult fitness. Physiological Zoology 48: 1–23.

    Google Scholar 

  • Milder, M. S., J. D. Cook, S. Stray and C. A. Finch, 1980. Idiopathic hemochromatosis, an interim report. Medicine 59: 34–49.

    Article  PubMed  CAS  Google Scholar 

  • Motulsky, A. G., 1979. Letter: Genetics of hemochromatosis. New England Journal of Medicine 301: 1291.

    Google Scholar 

  • Penney, J. B., Jr., A. B. Young, I. Shoulson, S. Starosta-Rubenstein, S. R. Snodgrass, J. Sanchez-Ramos, M. Ramos-Arroyo, F. Gomez, G. Penchaszadeh, J. Alvir et al.,1990. Huntington’s disease in Venezuela: 7 years of follow-up on symptomatic and asymptomatic individuals. Mov. Disord. 5: 93–99.

    Article  PubMed  Google Scholar 

  • Pericak-Vance, M. A., J. L. Bebout, P. C. Gaskell, L. H. Yamaoka, W. Y. Hung, M. H. Alberts et al.,1991. Linkage studies in familial Alzheimer’s disease: evidence for chromosome 19 linkage. Am. J. Human. Genet. 48: 1034–1050.

    CAS  Google Scholar 

  • Reed, T. E., J. H. Chandler, E. M. Hughes and R. T. Davidson, 1958. Huntington’s chorea in Michigan. 1. Demography and genetics. Am. J. Hum. Genet. 10: 201–225.

    Google Scholar 

  • Reed, T. E. and J. V. Neel, 1959. Huntington’s chorea in Michigan. 2. Selection and mutation. Am. J. Hum. Genet. 11: 107–136.

    Google Scholar 

  • Rice, W. R., 1992. Sexually antagonistic genes: Experimental evidence. Science 256: 1436–1438.

    Google Scholar 

  • Rose, M. R., 1984. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38: 1004–1010.

    Article  Google Scholar 

  • Rose, M. R. and B. Charlesworth, 1980. A test of evolutionary theories of senescence. Nature 287: 141–143.

    Article  PubMed  CAS  Google Scholar 

  • Rose, M. R. and B. Charlesworth, 198la. Genetics of life history in Drosophila melanogaster I. Sib analysis of adult females. Genetics 97: 173–186.

    Google Scholar 

  • Rose, M. R. and B. Charlesworth, 198lb. Genetics of life history in Drosophila melanogaster II. Exploratory selection experiments. Genetics 97: 187–196.

    CAS  Google Scholar 

  • Rose, M. R. and J. L. Graves, 1989. What evolutionary biology can do for gerontology. J. Gerontol. 44: B27–29.

    Article  PubMed  CAS  Google Scholar 

  • Rotter, J. I. and J. M. Diamond, 1987. News and Views: What maintains the frequencies of human genetic diseases? Nature 329: 289–290.

    Article  PubMed  CAS  Google Scholar 

  • Shokeir, M. H. K., 1975. Investigations on Huntington’s disease in the Canadian prairies. II. Fecundity and fitness. Clin. Genet. 11: 349–353.

    Google Scholar 

  • Sokal, R. R., 1970. Senescence and genetic load: Evidence from tribolium. Science 167: 1733–1734.

    Google Scholar 

  • St. George-Hyslop, P. H., R. E. Tanzi, R. J. Polinsky, J. L. Haines, L. Nee, P. C. Watkins et al.,1987. The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235: 885–890.

    Article  Google Scholar 

  • Stevens, D. L., 1981. Quoted in Hayden, M. R. Huntington’s Chorea, Springer-Verlag, Berlin.

    Google Scholar 

  • Stine, O. C. and K. D. Smith, 1990. The estimation of selection coefficients in Afrikaners: Huntington disease, porphyria variegata, and lipoid proteinosis. Am. J. Hum. Genet. 46: 452–458.

    Google Scholar 

  • Tanzi, R. E., P. H. St. George-Hyslop, J. L. Haines, R. J. Polinsky, L. Nee, J. F. Foncin et al.,1987. The genetic defect in familial Alzheimer’s disease is not tightly linked to the amyloid beta-protein gene. Nature 329: 156–157.

    Article  PubMed  CAS  Google Scholar 

  • Van Broeckhoven, C., A. M. Genthe, A. Vendenberghe, B. Horsthemke, H. Bakchovens, P. Raeymaekers et al.,1987. Failure of familial Alzheimer’s disease to segregate with the A4-amyloid gene in several European families. Nature 329: 153–155.

    Article  PubMed  Google Scholar 

  • Walker, D. A., P. S. Harper, R. G. Newcombe and K. Davies, 1983. Huntington’s chorea in South Wales: mutation, fertility, and genetic fitness. J. Med. Genetics. 20: 12–17.

    Google Scholar 

  • Wallace, D. C., 1967. The inevitability of growing old. Journal of Chronic Diseases 20: 475–486.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, D. C. and N. Parker, 1973. Huntington’s chorea in Queensland: The most recent story. Advances in Neurology 1: 223–236.

    Google Scholar 

  • Wexler, N. S. et al.,1987. Homozygotes for Huntington’s disease. Nature 326: 194–197.

    Google Scholar 

  • Williams, G. C., 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411.

    Article  Google Scholar 

  • Young, A. B. et al.,1986. Huntington’s disease in Venezuela: Neurologic features and functional decline. Neurology 36: 244–249.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Albin, R.L. (1994). Antagonistic pleiotropy, mutation accumulation, and human genetic disease. In: Rose, M.R., Finch, C.E. (eds) Genetics and Evolution of Aging. Contemporary Issues in Genetics and Evolution, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1671-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1671-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4416-7

  • Online ISBN: 978-94-017-1671-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics