Skip to main content

Abstract

Use of biological control agents will dramatically increase in the next decades as farmers move towards environmentally safe agricultural practices, in response to the people request. Bacillus thuringiensis is one of these agents and the derivative products are estimated to rise at least 20% per year. However, there are some species with an increased activity against specific insects and a broader host range. In addition, recombinant DNA technology allows now to reach new derivatives or to introduce the genetic determinants into new hosts, including plants and other microbes. It is obvious that technology combined with the diversity of the Bt species will increase the scope for the application of Bt. The benefits to agriculture and for the environment are considerable, but the possibility of adverse environmental impact for the fauna and/or the flora due to the large scale application of the new Bt derivative products needs to be considered and evaluated. Moreover, little is known about the ecology of Bt and the role of spores in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agaisse H, Gominet M, Okstad OE, Kolsto AB & Lereclus D (1999) PIcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol. Microbiol. 32, 1043–4053

    Article  PubMed  CAS  Google Scholar 

  2. Akiba Y (1986) Microbial ecology of Bacillus thuringiensis VI. Germination of Bacillus thuringiensis spores in the soil. Appl. Entomol. Zool. 21, 76–80

    Google Scholar 

  3. Arantes O & Lereclus D (1991) Construction of cloning vector for Bacillus thuringiensis. Gene 108, 115–119

    Article  PubMed  CAS  Google Scholar 

  4. Barston KA, Whiteley HR & Yang NS (1987) Bacillus thuringiensis S-endotoxin expressed in transgenic Nicotiana tobacum provides resistance to lepidopteran insects. Plant Physiol. 85, 1103–1109

    Article  Google Scholar 

  5. Baum JA, Kafekuda M & Gawron-Burke C (1996) Engineering Bacillus thuringiensis bioinsecticides with an indigeneous site specific recombination systems. Appl. Environ. Microbiol. 62, 4367–4373

    PubMed  CAS  Google Scholar 

  6. Beattie SH, Holt C, Hirst D & Williams AG (1998) Discrimination among Bacillus cereus, B. mycoides and B. thuringiensis and some other species of the genus Bacillus by Fourier transform infrared spectroscopy. FEMS Microbiol. Lett. 164, 201–206

    CAS  Google Scholar 

  7. Becker N & Margalit J (1993) Use of Bacillus thuringiensis israelensis against mosquitoes and blackflies, p. 147–170. In Entwistle PF, Cory JS, Bailey MJ & Higgs S (ed.), Bacillus thuringiensis, an environmental biopesticide: theory and practice, Wiley and Sons

    Google Scholar 

  8. Beebee T, Korner A & Bond RPM (1972) Differential inhibition of mammalian ribonucleic acid polymerases by an exotoxin from Bacillus thuringiensis. Biochem. J. 227, 619–625

    Google Scholar 

  9. Bravo A, Agaisse H, Salamitou S & Lereclus D (1996) Analysis of crylAa expression in sigE and sigK mutants of Bacillus thuringiensis. Mol. Gen. Genet. 250, 734–741

    PubMed  CAS  Google Scholar 

  10. Brousseau R, Saint-Onge A, Préfontaine G et al. (1992) Arbitrary primer polymerase chain reaction, a powerful method to identify Bacillus thuringiensis serovars and strains. Appl. Environ. Microbiol. 59, 114–119

    Google Scholar 

  11. Budarina ZI, Sinev MA, Maycrov A et al. (1994) Hemolysin II is more characteristic of Bacillus thuringiensis than Bacillus cereus. Arch. Microbiol. 161, 252–257

    PubMed  CAS  Google Scholar 

  12. Carlson CR & Kolsto AB (1994) A small (2.4 Mb) Bacillus cereus chromosome corresponds to a conserved region of a larger (5.3 Mb) Bacillus cereus chromosome. Mol. Microbiol. 13, 161–169

    Article  PubMed  CAS  Google Scholar 

  13. Carlson C R, Caugant DA & Kolsto AB (1994) Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl. Environ. Microbiol. 60, 1719–1725

    PubMed  CAS  Google Scholar 

  14. Damgaard PH (1995) Diarrhoreal enterotoxin production by strains of Bacillus thuringiensis isolated from commercial Bacillus thuringiensis based insecticides. FEMS Immunol. Med. Microbiol. 12, 245–250

    CAS  Google Scholar 

  15. Damgaard PH, Granum PE, Bresciani, J et al. (1997) Characterization of Bacillus thuringiensis isolated from infections in burn wounds. FEMS Immunol. Med. Microbiol. 18, 47–53

    CAS  Google Scholar 

  16. Damgaard PH, Larsen HD, Hansen BM et al. (1996) Enterotoxin producing strains of Bacillus thuringiensis isolated from food. Lett. Appl. Microbiol. 23, 146–150

    Article  PubMed  CAS  Google Scholar 

  17. Delécluse A, Bourgouin C, Klier, A & Rapoport G (1991) Deletion by in vivo recombination shows that the 28 kDa cytolytic polypeptide from Bacillus thuringiensis israelensis is not essential for mosquitocidal activity. J. Bacteriol. 173, 3374–3381

    PubMed  Google Scholar 

  18. Donovan WP, Tan Y & Slaney AC (1997) Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein. Appl. Environ. Microbiol. 63, 2311–2317

    PubMed  CAS  Google Scholar 

  19. Estruch J.J, Waren GW, Mullins MA et al. (1996) Vip3A a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 93, 5389–5394

    Article  PubMed  CAS  Google Scholar 

  20. Fisher R & Rosner L (1959) Toxicity of the microbial insecticide, Thuricide. J. Agr. Food Chem. 7, 686–688

    Article  CAS  Google Scholar 

  21. Gawron-Burke C & Baum JA (1991) Genetic manipulation of Bacillus thuringiensis insecticidal crystal proteins genes in bacteria, p. 237–263. In Setlow JK (ed.), Genetic Engineering: principles and methods, Plenum Press

    Google Scholar 

  22. Georghiou GP & Wirth MC (1997) Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subps. israelensis on development of resistance in the mosquito Culex quinguefasciatus (Diptera: Culicidae). Appl. Environ. Microbiol. 63, 1095–1101

    PubMed  CAS  Google Scholar 

  23. to Giffel MC, Beumer RR, Klijn N et al. (1997) Discrimination between Bacillus cereus and Bacillus thuringiensis using specific DNA probes based on variable regions of 16S rRNA. FEMS Microbiol. Lett. 146, 47–51

    Google Scholar 

  24. Goldberg LJ & Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitatus, Aedes aegypti and Culex pipiens. Mosq. News 37, 355–358

    Google Scholar 

  25. Gonzalez JM Jr, Brown BJ & Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for S-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl. Acad. Sci. USA 79, 6951–6955

    Article  PubMed  CAS  Google Scholar 

  26. Green M, Heumann M, Sokolow R et al. (1995) Public health implications of the microbial pesticide Bacillus thuringiensis: an epidemiological study, Oregon 1985–1986. Am. J. Public Health 80, 848–852

    Article  Google Scholar 

  27. Hansen BM, Damgaard PH, Eilenberg J & Pedersen JC (1996) Bacillus thuringiensis, ecology and environmental effects of its use for microbial pest control, Ministry of Environment and Energy. Environmental project n° 316. Danish Environmental Production Agency, Copenhagen, Denmark.

    Google Scholar 

  28. Hansen BM, Damgaard PH, Eilenberg, J & Pedersen JC (1998) Molecular and phenotypic characterization of Bacillus thuringiensis isolated from leaves and insects. J. Invertebr. Pathol. 71, 106–114

    Article  PubMed  CAS  Google Scholar 

  29. Hendriksen NB. & Hansen BM (1998) Phylogenetic relation of Bacillus thuringiensis: implications for risk associated to its use as a microbiological pest control agent. IOBC Bulletin 2, 5–8

    Google Scholar 

  30. Hernandez E, Ramisse F, Cruel T et al. (1999) Bacillus thuringiensis serotype H34 isolated from human and insecticidal strains serotypes 3a3b and H14 can lead to death of immuno competent mice after pulmonary infection. FEMS Immunol. Med. Microbiol. 24, 1–5

    Google Scholar 

  31. Hernandez E, Ramisse F, Ducoureau JP et al. (1998) Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection. Case report and experimental evidence of pathogenicity in immuno suppressed mice. J. Clin. Microbiol. 36, 2138–2139

    PubMed  CAS  Google Scholar 

  32. Huang F, Burchmann LL, Higgins RA & Mc Gaughey WH (1999) Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European Corn Borer. Science 284, 965–970

    Article  PubMed  CAS  Google Scholar 

  33. Ishii T & Ohba M (1993) Characterization of mosquito specific strains coisolated from a soil population. Syst. Appl. Microbiol. 16, 494–499

    Article  Google Scholar 

  34. Jackson SG, Goodbrand RB, Ahmed R & Kasatiya S (1995) Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritic outbreak investigation. Lett. Appl. Microbiol. 21, 103–105

    Article  PubMed  CAS  Google Scholar 

  35. Klier A (1992) Release of genetically modified microorganisms in natural environments: scientific and ethical problems, p. 183–190. In Gauthier ML (ed.), Gene tranfers and environment, Springer-Verlag

    Google Scholar 

  36. Krieg A (1971) Concerning alpha exotoxin produced by Bacillus thuringiensis and Bacillus cereus. J. Invertebr. Pathol. 17, 134–135

    Article  CAS  Google Scholar 

  37. Kurstak E (1962) Données sur l’épizootie bactérielle naturelle provoquée par un Bacillus de type Bacillus thuringiensis sur Ephestia kuhniella. Entomophaga Mémoire hors série 2, 245–247.

    Google Scholar 

  38. Lambert B & Peferoen M (1992) Insecticidal promise of Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. Bioscience 42, 112–122

    Article  Google Scholar 

  39. Lampel JS, Canter GL, Dimock MB. et al. (1994) Integrative cloning, expression and stability of the CryIA(c) gene from Bacillus thuringiensis subsps. kurstaki in a recombinant strain of Clavibacter xyli subsps. cynodontis. Appl. Environ. Microbiol. 60, 501–508

    Google Scholar 

  40. Lereclus D, Agaisse H, Gominet M. & Chaufaux J (1995) Overproduction of encapsulated insecticidal crystal protein in Bacillus thuringiensis SpoOA mutant. Bio/Technology 13, 67–71

    Article  PubMed  CAS  Google Scholar 

  41. Identification of a gene that positively regulates transcription of the phosphatidyl inositol-specific phospholipase C gene at the onset of the stationary phase. J. Bacteriol. 178, 2749 2756

    Google Scholar 

  42. Lereclus D, Vallade M, Chaufaux J et al. (1992) Expansion of the insectidical host range of Bacillus thuringiensis by in vivo genetic recombination. Bio/Technology, 10, 418–421

    Article  PubMed  CAS  Google Scholar 

  43. Levinson BL, Kasyak KJ, Chiu SS et al. (1990) Identification of (3-exotoxin production plasmids encoding (3-exotoxin and a new exotoxin in Bacillus thuringiensis by using HPLC. J. Bacteriol. 172, 3177–3179

    Google Scholar 

  44. Losey JE, Rayor LS & Carter ME (1999) Transgenic pollen harm monarch larvae. Nature 399: 945.

    Article  Google Scholar 

  45. Luthy P (1989) Large scale use of Bacillus thuringiensis H14 in a mosquito infected area in a southern region of Switzerland. Proceedings and Abstracts Society for Invertebrate Pathology XXIInd Annual Meeting, p. 82, University of Maryland USA

    Google Scholar 

  46. Margalit J & Dean D (1985) The story of Bacillus thuringiensis var. israelensis. J. Am. Mosq. Control Assoc. 1, 1–7

    PubMed  CAS  Google Scholar 

  47. Martin PAW & Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55, 2437–2442

    PubMed  CAS  Google Scholar 

  48. Mc Clintock JT, Schaffer CD & Sjoblod RD (1995) A comparative review of the mammalian toxicity of Bacillus thuringiensis based pesticides. Pest. Sciences 45, 95105

    Google Scholar 

  49. Mc Gaughey WH, Gould F & Gelernter W (1998) Bt resistance management. Nature Biotechnol. 16, 144–146

    Google Scholar 

  50. Meadows MP (1995) Bacillus thuringiensis in the environment: ecology and risk assessment. p. 193–200. In Entwistle PF, Cory JS, Bailey MJ & Higgs S (ed.), Bacillus thuringiensis,an environmental biopesticide: theory and practice, Wiley and Sons

    Google Scholar 

  51. Meadows MP, Ellar DJ, Butt J et al. (1992) Distribution, frequency and diversity of Bacillus thuringiensis in an animal feed mill. Appl. Environ. Microbiol. 58, 13441350

    Google Scholar 

  52. Obukowitz MG, Perlak FT, Kusamo-Kretzner K et al. (1986) Integration of the S-endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of Pseudomonas using Tn5. Gene 45, 327–331

    Article  Google Scholar 

  53. Peferoen M (1997) Progress and prospects for field use of Bt gene in crops. Trends Biotechnol. 15, 173–177

    Article  CAS  Google Scholar 

  54. Penalva MA, Moya A, Dopazo J et al. (1990) Sequence of isopenicilline N synthase genes suggest horizontal transfer genes from prokaryotes to eukaryotes. Proc. R. Soc. Lond. 241, 164–168

    CAS  Google Scholar 

  55. Pendelton I R, Bernheimer AW & Grushoff, P (1973) Purification and partial characterization of hemolysins from Bacillus thuringiensis. J. Invertebr. Pathol. 21, 131–135

    Article  Google Scholar 

  56. Salamitou S, Marchai M & Lereclus D (1996) Bacillus thuringiensis: un pathogène facultatif. Ann. Institut Pasteur/Actualités 7, 285–296

    Google Scholar 

  57. Samples JR & Buettner H (1983) Corneal ulcer caused by a biologic insecticide (Bacillus thuringiensis). Am. J. Ophtalmol. 95, 258–260

    Article  CAS  Google Scholar 

  58. Schnepf E, Crickmore NB, Van Rie J et al. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806

    Google Scholar 

  59. Shinagawa K (1990) Purification and characterization of Bacillus cereus enterotoxin and its application to diagnosis, p. 181–193. In Pohland AE, Dowell VR Jr and Richard JL (ed.), Microbial Toxins in Food and Feeds — Cellular and Molecular modes of action, Plenum Press

    Google Scholar 

  60. Smith RA & Couche GA (1991) The phylloplane is a source of Bacillus thuringiensis variants. Appl. Environ. Microbiol. 57, 311–315

    PubMed  CAS  Google Scholar 

  61. Stevens SE Jr, Murphy R C, Lamoreaux WJ & Coons LB (1994) A genetically engineered mosquitocidal cyanobacterium. J. Appl. Phycol. 6, 187–197

    Article  CAS  Google Scholar 

  62. Stewart CN, All JN, Raymer PL & Ramachandran S (1997) Increased fitness of transgenic rapeseed under insect selection pressure. Mol. Ecol. 6, 773–779

    Article  Google Scholar 

  63. Tayaboli AF & Seligny VL (1997) Cell integrity markers for in vitro evaluation of cytotoxic response to bacteria containing commercial insecticides. Ecol. Environ. Safety 37, 152–162

    Article  Google Scholar 

  64. Tiball R W (1993) Bacterial phospholipases C. Microbiol. Rev. 54, 347–366

    Google Scholar 

  65. Wirth MC, Georghiou GP & Federici BA (1997) CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito Culex quinquefasciatus. Proc. Natl. Acad. Sci. USA 94, 10536–10540

    Article  PubMed  CAS  Google Scholar 

  66. Yamada S, Ohashi E, Agata N & Ventakeswaran K (1999) Cloning and nucleotide sequence analysis of gyrB of B. cereus, B. thuringiensis, B. mycoides and B. anthracis and their application to the detection of B. cereus in rice. Appl. Environ. Microbiol. 65, 1483–1490

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klier, A. (2000). Bacillus thuringiensis : risk assessment. In: Charles, JF., Delécluse, A., Roux, C.NL. (eds) Entomopathogenic Bacteria: from Laboratory to Field Application. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1429-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1429-7_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5542-2

  • Online ISBN: 978-94-017-1429-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics