Skip to main content

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 17))

Abstract

The high precision gravity measurements lo be made by recently launched (and recently approved) satellites place new demands on models of Earth, atmospheric, and oceanic tides. The latter is the most problematic. The ocean tides induce variations in the Earth’s geoid by amounis I hat far exceed the new satellite sensitivities, and tidal models must be used to correct for this. Two methods are used here lo determine the standard errors in current ocean tide models. Al long wavelengths these errors exceed the sensitivity of the GRACE mission. Tidal errors will not prevent the new satellite missions from improving our knowledge of the geopotential by orders of magnitude, but the errors may well contaminate GRACE estimates of temporal variations in gravity. Solar tides are especially problematic because of their long alias periods. The satellite data may be used lo improve tidal models once a sufficiently long time series is obtained. Improvements in the long-wavelength components of lunar tides are especially promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cheng, M. K.: 2002, ‘Gravitational perturbation theory for imersatel lite tracking’, J. Geod. 76. 169— 185.

    Google Scholar 

  • Egbert. G. D, and S, Y. Erofccva: 2002. ‘Efficient inverse modeling of barotropic ocean tides’, J. Atmos. Oceanic Tech. 19, 183–204.

    Google Scholar 

  • ESA: 1999, Gravity Field and Steady-State Ocean Circulation Mission, Rep. SP-1233, European Space Agency. Noordwijk. 217 pp.

    Google Scholar 

  • Knudsen, P and 0. Andersen: 2002, ‘Correcting GRACE gravity tie Ids for ocean tide effects’, Geophys. Res. Lett. 29(8). 19–1–19–4.

    Google Scholar 

  • Lambeck. K.: 1988, Geophysical Geodesy, Clarendon Press, Oxford.

    Google Scholar 

  • Lemoine, F. ct al.: 1998. The development of the joint NASA GSFC and NIMA gcopotential model EGM96. NASA Tech. Memo. 206861, Goddard Space Flight Center. Greenbelt. 575 pp.

    Google Scholar 

  • Matsumoto, K., T. Takanezawa, M. Ooe: 2000, ‘Ocean tide models developed by assimilating Topex/Poseidon altimeter data into hydrodynamical model’. J. Oceanogr. 56. 567–581.

    Article  Google Scholar 

  • Pavlis, E, C. and L. lorio: 2002. ‘The impact of tidal errors on the determination of the Lensc-Thirring effect from satellite laser ranging’. Int. J. Mod. Pliys. D, 11, 599–618.

    Article  Google Scholar 

  • Ray, R. D.: 1999, A global ocean lide model from Topex/Poseidon altimetry. NASA Tech. Memo. 209478. Goddard Space Flight Center, Greenbelt, 58 pp.

    Google Scholar 

  • Ray. R. D., R. J, Eancs, G. D. Egbert. N. K. Pavlis: 2001, ‘Error spectrum for the global Mi ocean tide’. Geophys. Res. Lett. 28, 21–24.

    Google Scholar 

  • Rowlands. D. D., R. D. Ray, D. S. Chinn, F. G. Lemoine: 2002, ‘Short-arc analysis of intersatellite tracking data in a gravity mapping mission’, J. Geod. 76. 307–316.

    Google Scholar 

  • Schrama. E. J. O.: 1996, ‘Gravity research missions reviewed in light of the indirect ocean tide potential’. in R. H. Rapp. A. A, Cazenave and R. S. Nerem (eds.). Global Gravity Field and Its Temporal Variations, Springer. Berlin, pp. 131–140.

    Chapter  Google Scholar 

  • Shum, C. K. et a I.: 1997, ‘Accuracy assessments of recent global ocean lide models’. J. Geophys. Res. 102. 25173–25194.

    Article  Google Scholar 

  • Tapley, B. D. and C. Reigber: 2000. ‘The GRACE mission: status and future plans’ (abstract). EOS, Trans. AGU, 81. Fall Suppl.. F307.

    Google Scholar 

  • Visser. P. et al.: 2002. ‘The European Earth Explorer Mission GOCE: Impact for the geoscienccs’. in J, Mitrovica and L. Vermeersen (eds.). Ice Sheets, Sea Level and the Dynamic Earth. American Geophysical Union, Washington.

    Google Scholar 

  • Wahr, J.. M. Molenaar. F. Bryan: 1998. Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE’, J. Geophys. Res. 103. 30205–30229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ray, R.D., Rowlands, D.D., Egbert, G.D. (2003). Tidal Models in a New Era of Satellite Gravimetry. In: Beutler, G., Drinkwater, M.R., Rummel, R., Von Steiger, R. (eds) Earth Gravity Field from Space — From Sensors to Earth Sciences. Space Sciences Series of ISSI, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1333-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1333-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6334-2

  • Online ISBN: 978-94-017-1333-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics