Skip to main content

A Representation of the Interval Hull of a Tolerance Polyhedron Describing Inclusions of Function Values and Slopes

  • Chapter
Developments in Reliable Computing
  • 370 Accesses

Abstract

Given a nonempty set of functions

$$\begin{gathered} F = \{ f:[a,b] \to \mathbb{R}: \hfill \\ f({x_i}) \in {w_i}, i = 0,...,n, and \hfill \\ f(x) - f(y) \in {d_i}(x - y) \forall x,y \in [{x_{i - 1}},{x_i}], i = 1,...,n\} ,\hfill \\ \end{gathered} $$

where a = x 0 < ... < x n = b are known nodes and w i , i = 0, ..., n, d i , i = 1, ..., n, known compact intervals, the main aim of the present paper is to show that the functions

$$\begin{gathered} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f} :x \mapsto \min \{ f(x):f \in F\} ,x \in [a,b], and \hfill \\ f:x \mapsto \max \{ f(x):f \in F\} ,x \in [a,b], \hfill \\ \end{gathered} $$

exist, are in F, and are easily computable. This is achieved essentially by giving simple formulas for computing two vectors \(\tilde l, \tilde u \in {\mathbb{R}^{n + 1}}\) with the properties

  • \(\tilde l \leqslant \tilde u\) implies

    $$\begin{gathered} \tilde l, \tilde u \in T: = \{ \xi = {({\xi _0},...,{\xi _n})^T} \in {\mathbb{R}^{n + 1}}: \hfill \\ {\xi _i} \in {w_i}, i = 0,...,n, and \hfill \\ {\xi _i} - {\xi _{i - 1}} \in {d_i}({x_i} - {x_{i - 1}}),i = 1,...,n\} \hfill \\ \end{gathered} $$

    and that \([\tilde l,\tilde u]\) is the interval hull of (the tolerance polyhedron) T;

  • \(\tilde l \leqslant \tilde u\) iff T ≠ ø iff F ≠ ø.

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f} ,\bar f\) can serve for solving the following problem:

Assume that μ is a monotonically increasing functional on the set of Lipschitz-continuous functions f : [a, b] → ℝ (e.g. μ(f) = ſ b a f (x) dx or μ(f)= min f ([a, b]) or μ (f) = max f ([a, b])), and that the available information about a function g : [a, b] →ℝ is “gF,” then the problem is to find the best possible interval inclusion of μ (g). Obviously, this inclusion is given by the interval \([\mu (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f} ),\mu (\bar f)].\) Complete formulas for computing this interval are given for the case μ (f) = ſ b a f(x) dx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hammer, R., Hocks, M., Kulisch, U., and Ratz, D.: Numerical Toolbox for Verified Computing I—Basic Numerical Problems, Springer, Berlin, 1993.

    MATH  Google Scholar 

  2. Heindl, G.: Zur Einschließung der Werte von Peanofunktionalen, Z. angew. Math. Mech. 75 (II) (1995), pp. 637–638.

    Google Scholar 

  3. Jansson, C.: Construction of Convex Lower and Concave Upper Bound Functions, Bericht 98.1 des Forschungsschwerpunktes Informations-und Kommunikationstechnik der Technischen Universität Hamburg-Harburg, März, 1998.

    Google Scholar 

  4. Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, C. P.: PASCAL —XSC Language Reference with Examples, Springer, Berlin, 1992.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heindl, G. (1999). A Representation of the Interval Hull of a Tolerance Polyhedron Describing Inclusions of Function Values and Slopes. In: Csendes, T. (eds) Developments in Reliable Computing. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1247-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1247-7_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5350-3

  • Online ISBN: 978-94-017-1247-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics