Skip to main content

Electrophysiological and Pharmacological Studies on Excitable Tissues in Nematodes

Nematode Electrophysiology and Pharmacology

  • Chapter
Cell Signalling in Prokaryotes and Lower Metazoa

Summary

Nematodes include both major parasites of humans, livestock and plants and free-living species such as Caenorhabditis elegans. The nematode nervous system (especially in C. elegans) is exceptionally well defined in terms of the number, location and projections of the small number of neurons in the nervous system and their integration into circuits involved in regulatory behaviours vital to their survival. This chapter will summarize what is known about the biological activity of neurotransmitters in nematodes: the biosynthetic pathways and genes involved, their receptors, inactivation mechanisms and second messenger signalling systems. It will cover the “classical” transmitters, such as acetylcholine (ACh), GABA, glutamate, serotonin, dopamine, octopamine, noradrenaline and nitric oxide. The localization of peptides throughout the nematode nervous system is summarized, in addition to the isolation of nematode neuropeptides by both traditional biochemical techniques and more modern genetic means. The major contribution of the completion of the C. elegans genome-sequencing programme is highlighted throughout. Efforts to unravel neurotransmitter action in various physiological actions such as locomotion, feeding and reproduction are detailed, as well as the various inactivation mechanisms for the current complement of the nematode transmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, A., Shukla, O.P., Ghatak, S., and Tekwani, B.L. (1990) Biogenic amines, metabolites and monoamine oxidase in filarial worm, Setaria cervi. International Journal of Parasitology 20, 873–881.

    CAS  Google Scholar 

  • Anderson, R.C. (2000) Nematode Parasites of Vertebrates. Second Edition. CABI Publishing, Oxford. Angstadt, J.D., and Stretton, A.O.W. (1989) Slow active potentials in ventral inhibitory motor neurons of the nematode Ascaris. Journal of Comparative Physiology A 166, 165–177.

    Google Scholar 

  • Angstadt, J.D., Donmoyer, J.E., and Stretton, A.O.W. (1989) Retrovesicular ganglion of the nema-tode Ascaris. Journal of Comparative Neurology 284, 374–388.

    CAS  Google Scholar 

  • Arena, J.P., Liu, K.K., Paress, P.S., and Cully, D.F. (1991) Avermectin-sensitive chloride currents induced by Caenorhabditis elegans RNA in Xenopus oocytes. Molecular Pharmacology 40, 368–374.

    PubMed  CAS  Google Scholar 

  • Arena, J.P., Liu, K.K., Paress, P.S., Schaeffer, J.M., and Cully, D.F. (1992) Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin. Molecular Brain Research 15, 339–348.

    PubMed  CAS  Google Scholar 

  • Arena, J.P., Liu, K.K., Paress, P.S., Frazier, E.G., Cully, D.F., Mrozik, H., and Schaeffer, J.M. (1995). The mechanism of action of avermectins in Caenorhabditis elegans: correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological activity. Journal of Parasitology 81, 286–294.

    PubMed  CAS  Google Scholar 

  • Atkinson, H.J., Isaac, R.E., Harris, P.D., and Sharpe, C.M. (1988) FMRFamide-immunoreactivity within the nervous system of the nematodes Panagrellus redivivus, Caenorhabditis elegans and Heterodera glycines. Journal of Zoology 216, 663–671.

    Google Scholar 

  • Avery, L. (1993) Motor neuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans. Journal of Experimental Biology 175, 283–297.

    CAS  Google Scholar 

  • Avery, L., and Horvitz, H.R. (1989) Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of Caenorhabditis elegans. Neuron 3, 473–485.

    CAS  Google Scholar 

  • Avery, L., and Horvitz, H.R. (1990) Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. Journal of Experimental Zoology 253, 263–270.

    CAS  Google Scholar 

  • Baldwin, E., and Moyle, V. (1949) A contribution to the physiology and pharmacology of Ascaris lumbricoides from the pig. British Journal of Pharmacology 4, 145–152.

    CAS  Google Scholar 

  • Bamber, B.A., Beg, A.A., Twyman, R.E., and Jorgensen, E.M. (1999) The C. elegans une-49 locus encodes multiple subunits of heteromultimeric GABA receptor. Journal of Neuroscience 19, 5348–5359.

    PubMed  CAS  Google Scholar 

  • Bargmann, C.I. (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282, 2028–2033.

    PubMed  CAS  Google Scholar 

  • Barreteau, H., Trouvin, J.H., Goudey-Perriere, F., Jacquot, C., and Gayral, P. (1991) Biogenic amines and GABA in the larval and adult forms of the nematode Nippostrongylus brasiliensis. Comparative Biochemistry and Physiology 100C, 445–449.

    CAS  Google Scholar 

  • Bascal, Z.A., Montgomery, A., Holden-Dye, L., Williams, R.G., and Walker, R.J. (1995) Histochemical mapping of NADPH diaphorase in the nervous system of the parasitic nematode Ascaris suum. Parasitology 110 625–637.

    Google Scholar 

  • Bascal, Z.A., Holden-Dye, L., Willis, R.J., Smith, S.W.G., and Walker, R.J. (1996a) Novel azole derivatives are antagonists at the inhibitory GABA receptor on the somatic muscle cells of the parasitic nematode, Ascaris suum. Parasitology 112, 253–259.

    CAS  Google Scholar 

  • Bascal, Z.A., Montgomery, A., Holden-Dye, L., Williams, R.G., Thorndyke, M.C., and Walker, R.J. (1996b) NADPH diaphorase activity in peptidergic neurones of the parasitic nematode, Ascaris suum. Parasitology 112, 125–134.

    CAS  Google Scholar 

  • Bascal, Z.A., Cunningham, J.M., Holden-Dye, L., O’Shea, M., and Walker, R.J. (2001) Characterization of a putative nitric oxide synthase in the neuromuscular system of the parasitic nematode, Ascaris suum. Parasitology 122, 219–231.

    CAS  Google Scholar 

  • Beck, K.F., Eberhardt, W., Frank, S., Huwiler, A., Messmer, U.K., Muhl, H., and Pfeilschifter, J. (1999) Inducible NO synthase: Role in cellular signalling. Journal of Experimental Biology 202, 645–653.

    Google Scholar 

  • Bowman, J.W., Winterrowd, C.A., Friedman, A.R., Thompson, D.P., Klein, R.D., Davis, J.P., Maule, A.G., Blair, K.L., and Geary, T.G. (1995) Nitric oxide mediates the inhibitory effects of SDPNFLRFamide, a nematode FMRFamide-related neuropeptide, in Ascaris suum. Journal of Neurophysiology 74, 1880–1888.

    Google Scholar 

  • Bowman, J.W., Friedman, A.R., Thompson, D.P., Ichhpurani, A.K., Kellman, M.F., Marks, N., Maule, A.G., and Geary, T.G. (1996) Structure-activity relationships of KNEFIRFamide (AF1), a nematode FMRFamide-related peptide, on Ascaris suum muscle. Peptides 17, 381–387.

    PubMed  CAS  Google Scholar 

  • Brading, A.F., and Caldwell, P.C. (1964) The effect of ions on the resting potential of muscle cells in Ascaris lumbricoides. Journal of Physiology 173, 36 P.

    Google Scholar 

  • Brading, A.F., and Caldwell, P.C. (1971) The resting membrane potential of the somatic of Ascaris lumbricoides. Journal of Physiology 217, 605–624.

    CAS  Google Scholar 

  • Brehmer, A., and Stack, W. (1997) Morphological classification of NADPHd-positive and -negative myenteric neurons in the porcine small intestine. Cell Tissue Research 287, 127–134.

    PubMed  CAS  Google Scholar 

  • Breum, L., Bierre, U., Bak, J.F., Jacobsen, S., and Astrup, A. (1995) Long-term effects of fluoxetine on glycemic control in obese patients with non-insulin-dependent diabetes mellitus or glucose intolerance: influence on muscle glycogen synthase and insulin receptor kinase activity. Metabolism 44, 1570–1576.

    PubMed  CAS  Google Scholar 

  • Brooman, J.E. (1998) The characterisation of serotonin receptors in the parasitic nematode Ascaris suum. PhD Thesis, University of Southampton, U.K.

    Google Scholar 

  • Brownlee, D.J.A., and Fairweather, I. (1999) Exploring the neurotransmittter labyrinth in nematodes. Trends in Neurosciences 22, 16–24.

    PubMed  CAS  Google Scholar 

  • Brownlee, D.J.A., and Walker, R.J. (1999) Actions of nematode FMRFamide-related peptides on the pharyngeal muscle of the parasitic nematode, Ascaris suum. Annals of the New York Academy of Sciences 897, 228–238.

    PubMed  CAS  Google Scholar 

  • Brownlee, D.J.A., Fairweather, I., and Johnston, C.F. (1993) Immunocytochemical demonstration of neuropeptides in the peripheral nervous system of the roundworm Ascaris suum (Nematoda, Ascaroidea). Parasitology Research 79, 302–308.

    PubMed  CAS  Google Scholar 

  • Brownlee, D.J.A., Holden-Dye, L., and Walker, R.J. (1995) The action of serotonin and the nematode neuropeptide KSAYMRFamide on the pharyngeal muscle of the parasitic nematode Ascaris suum. Parasitology 111, 379–384.

    CAS  Google Scholar 

  • Brownlee, D.J.A., Holden-Dye, L., and Walker, R.J. (1997) Actions of the anthelmintic ivermectin on the pharyngeal muscle of the parasitic nematode, Ascaris suum. Parasitology 115, 553–561.

    CAS  Google Scholar 

  • Brownlee, D.J.A., Holden-Dye, L., and Walker, R.J. (2000) The Range and Biological Activity of FMRFamide-related Peptides and Classical Neurotransmitters in Nematodes. Advances in Parasitology 45, 109–180.

    PubMed  CAS  Google Scholar 

  • Brownlee, D.J.A., Fairweather, I., Johnston, C.F., Smart, D., Shaw, C., and Halton, D.W. (1993) Immunocytochemical demonstration of neuropeptides in the central nervous system of the roundworm, Ascaris suum (Nematoda: Ascaroidea). Parasitology 106, 305–316.

    PubMed  CAS  Google Scholar 

  • Brownlee, D.J.A., Fairweather, I. Johnston, C.F., and Shaw, C. (1994a) Immunocytochemical demonstration of peptidergic and serotonergic components in the enteric nervous system of the roundworm Ascaris suum. Parasitology 108 89–103.

    Google Scholar 

  • Brownlee, D.J.A., Brennan, G.P., Halton, D.W., Fairweather, I., and Shaw, C. (1994b) Ultrastructural localization of pancreatic polypeptide-and FMRFamide-immunoreactivities within the central nervous system of the nematode, Ascaris suum (Nematoda: Ascaroidea). Parasitology 108, 587–593.

    PubMed  CAS  Google Scholar 

  • Brownlee, D.J.A., Fairweather, I., Holden-Dye, L., and Walker, R.J. (1996a) Nematode Neuropeptides: Localization, Isolation and Functions. Parasitology Today 12, 343–351.

    Google Scholar 

  • Brownlee, D.J.A., Fairweather, I., Thorndyke, M.C., and Johnston, C.F. (1996b) Cellular and subcel-lular localization of SALMFamide (S1)-like immunoreactivity within the central nervous system of the nematode Ascaris suum (Nematoda: Ascaroidea). Parasitology Research 82, 149–156.

    Google Scholar 

  • Bush, E.R., Holden-Dye, L., Foreman, R.C., and Walker, R.J. (1997) Characterization of nematode glutamate receptors. Journal of Physiology 504P, p25.

    Google Scholar 

  • Byerly, L., and Masuda, M.O. (1979) Voltage-clamp analysis of the potassium current that produces a negative-going action potential in Ascaris muscle. Journal of Physiology 288, 263–284.

    PubMed  CAS  Google Scholar 

  • Caldwell, P.C., and Ellory, J.C. (1968) Ion movements in the somatic muscle cells of Ascaris lumbricoides. Journal of Physiology 197, 75–76 P.

    Google Scholar 

  • Campbell, W.C. (1989) Ivermectin and Abamectin. Springer-Verlag, New York.

    Google Scholar 

  • Chaudhuri, J., and Donahue, M.J. (1989) Serotonin receptors in the tissues of adult Ascaris suum. Molecular and Biochemical Parasitology 35, 191–198.

    CAS  Google Scholar 

  • Chaudhuri, J., Martin, R.E., and Donahue, M.J. (1988a). Evidence for the absorption and synthesis of 5-hydroxytryptamine in perfused muscle and intestinal tissue and whole worms of adult Ascaris suum. Parasitology 96, 157–170.

    CAS  Google Scholar 

  • Chaudhuri, J., Martin, R.E., and Donahue, M.J. (1988b). Tryptophan hydroxylase and aromatic L-amino acid decarboxylase activities in the tissues of adult Ascaris suum. International Journal of Parasitology 18, 318–324.

    Google Scholar 

  • Chen, X.H., Holden-Dye, L., and Walker, R.J. (1997) Inhibitory actions of dopamine in the motor nervous system of the parasitic nematode, Ascaris suum. Journal of Physiology 504P, 24–25 P.

    Google Scholar 

  • Colasanti. M., and Venturini, G. (1998) Nitric oxide in invertebrates. Molecular Neurobiology 17, 157–174.

    Google Scholar 

  • Colquhoun, L.M. (1991) Studies on the nicotinic receptor on the somatic muscle cells of the parasitic nematode Ascaris suum. PhD Thesis, University of Southampton, U.K.

    Google Scholar 

  • Colquhoun, L.M., Holden-Dye, L., and Walker, R.J. (1991) The pharmacology of cholinoceptors on the somatic muscle cells of the parasitic nematode, Ascaris suum. Journal of Experimental Biology 158, 509–530.

    CAS  Google Scholar 

  • Colquhoun, L.M., Holden-Dye, L., and Walker, R.J. (1992) The actions of nicotinic receptor specific toxins on the somatic muscle cells of the parasitic nematode, Ascaris suum. Molecular Neuropharmacology 3, 11–16.

    Google Scholar 

  • Cowden, C., and Stretton, A.O.W. (1993) AF2, an Ascaris neuropeptide: Isolation, sequence, and bioactivity. Peptides 14, 423–430.

    PubMed  CAS  Google Scholar 

  • Cowden, C., and Stretton, A.O.W. (1995) Eight novel FMRFamide-like neuropeptides isolated from the nematode Ascaris suum. Peptides 16, 491–500.

    Google Scholar 

  • Cowden, C., Stretton, A.O.W., and Davis, R.E. (1989) AF1, a sequenced bioactive neuropeptide isolated from the nematode Ascaris suum. Neuron 2, 1465–1473.

    CAS  Google Scholar 

  • Croll, N.A., and Matthews, B.E. (1977) Biology of Nematodes. Blackie Sons, London.

    Google Scholar 

  • Cully, D.F., Vassilatis, D.K., Liu, K.K., Paress, P.S., Van der Ploeg, L.H.T., Schaeffer, J.M., and Arena, J.P. (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371, 707–711

    CAS  Google Scholar 

  • Cully, D.F., Wilkinson, H., Vassilatis, D.K., Etter, A., and Arena, J.P. (1996) Molecular biology and Electrophysiology of glutamate-gated chloride channels of invertebrates. Parasitology 113, 5191–5200.

    Google Scholar 

  • Davenport, H.E. (1949) The haemoglobin of Ascaris lumbricoides. Proceedings of the Royal Society B 136, 255–270.

    Google Scholar 

  • David, M.W., Somerville, D., Lee, R.Y.N., Lockery, S., Avery, L., and Fambrough, D.M. (1995) Mutations in the Caenorhabditis elegans Na, K-ATPase a subunit gene, eat-6, disrupts excitable cell function. Journal of Neuroscience 15, 8408–8418.

    Google Scholar 

  • Davis, R.E. (1998a) Neurophysiology of glutamatergic signalling and anthelmintic action in Ascaris suum: pharmacological evidence for a kainate receptor. Parasitology 116, 471–486.

    PubMed  CAS  Google Scholar 

  • Davis, R.E. (1998b) Action of excitatory amino acids on hypodermis and the motornervous system of Ascaris suum: pharmacological evidence for a glutamate transporter. Parasitology 116, 487–500.

    PubMed  CAS  Google Scholar 

  • Davis, R.E., and Stretton, A.O.W. (1989a) Passive membrane properties of motoneurones and their role in long-distance signalling in the nematode Ascaris. Journal of Neuroscience 9, 403–414.

    CAS  Google Scholar 

  • Davis, R.E., and Stretton, A.O.W. (1989b) Signalling properties of Ascaris motorneurones: Graded active responses, graded synaptic transmission and tonic transmitter release. Journal of Neuroscience 9, 415–425.

    PubMed  CAS  Google Scholar 

  • Davis, R.E., and Stretton, A.O.W. (1996) The motonervous system of Ascaris: electrophysiology and anatomy of the neurons and their control by neuromodulators. Parasitology 113, S97 — S117.

    PubMed  Google Scholar 

  • Day, T.A., and Maule, A.G. (1999) Parasitic Peptides! The structure and function of neuropeptides in parasitic worms. Peptides 20, 999–1019.

    PubMed  CAS  Google Scholar 

  • Delany, N.S., Laughton, D.L., and Wolstenholme, A.J. (1998) Cloning and localization of an avermectin receptor-related subunit from Haemonchus contortus. Molecular and Biochemical Parasitology 97, 177–187.

    CAS  Google Scholar 

  • Del Castillo, J., De Mello, W.C., and Morales, T. (1963) The physiological role of acetylcholine in the neuromuscular system of Ascaris lumbricoides. Archives International Physiologie and Biochimie 71, 741–757.

    Google Scholar 

  • Del Castillo, J., Morales, T., and Sanchez, V. (1963) Action of piperazine on the neuromuscular system of Ascarislumbricoides. Nature 200, 706–707.

    Google Scholar 

  • Del Castillo, J., De Mello, W.C., and Morales, T.A. (1964a) Influence of some ions on the membrane potential of Ascaris muscle. Journal of General Physiology 48, 129–140.

    Google Scholar 

  • Del Castillo, J., De Mello, W.C., and Morales, T.A. (1964b) Inhibitory action of g-aminobutyric acid (GABA) on Ascaris muscle. Experientia 20, 141–145.

    PubMed  Google Scholar 

  • Dent, J.A., Davis, M.W., and Avery, L. (1997) avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. European Molecular Biology Organization Journal 16, 5867–5879.

    Google Scholar 

  • Dent, J.A., Smith, M.M., Vassilatis, D.K., and Avery, L. (2000) The genetics of ivermectin resistance in Caenorhabditis elegans. Proceedings of the National Academy of Sciences U.S.A. 97, 2674–2679.

    CAS  Google Scholar 

  • Donahue, M.J., Yacoub, N.J., Michnoff, C.A., Masaracchia, R.M., and Harris, B.G. (1981) Serotonin (5-hydroxytryptamine): A possible regulator of glycogenolysis in perfused muscle segments of Ascaris suum. Biochemical Biophysical Research Communications 101, 112–117.

    CAS  Google Scholar 

  • Duittoz, A.H., and Martin, R.J. (1991) Antagonist properties of arylaminopyridazine GABA derivatives at the Ascaris muscle GABA receptor. Journal of Experimental Biology 159, 149–164.

    PubMed  CAS  Google Scholar 

  • Edison, A.S., Messinger, L.A., and Stretton, A.O.W. (1997) afp-1 A gene encoding multiple transcripts of a new class of FMRFamide-like neuropeptides in the nematode Ascaris suum. Peptides 18 929–935.

    Google Scholar 

  • Etter, A., Cully, D.F., Schaeffer, J.M., Liu, K.K., and Arena, J.P. (1996) An amino acid substitution in the pore region of a glutamate-gated chloride channel enables the coupling of ligand binding to channel gating. Journal of Biological Chemistry 271, 16035–16039.

    PubMed  CAS  Google Scholar 

  • Fellowes, R.A., Maule, A.G., Marks, N.J., Geary, T.G., Thompson, D.P., Shaw, C., and Halton, D.W. (1998) Modulation of the motility of the vagina vera of Ascaris suum in vitro by FMRFamide-related peptides. Parasitology 116, 277–287.

    PubMed  CAS  Google Scholar 

  • Fellowes, R.A., Maule, A.G., Martin, R.J., Geary, T.G., Thompson, D.P., Kimber, M.J., Marks, N.J., and Halton, D.W. (2000a) Classical neurotransmitters in the ovijector of Ascaris suum: localization and modulation of muscle activity. Parasitology 121, 325–336.

    PubMed  CAS  Google Scholar 

  • Fellowes, R.A., Maule, A.G., Marks, N.J., Geary, T.G., Thompson, D.P., and Halton, D.W. (2000b)Nematode neuropeptide modulation of the vagina vera of Ascaris suum: in vitro effects of PF1, PF2, PF4, AF3 and AF4. Parasitology 120, 79–89.

    Google Scholar 

  • Frandsen, J.C., and Bone, L.W. (1987) Biogenic amines and their metabolites in Trichostrongylus coluhriformis, a nematode parasitic of ruminants. Comparative Biochemistry Physiology 87C, 75–77.

    CAS  Google Scholar 

  • Frandsen, J.C., and Bone, L.W. (1988) Derivatives of epinephrine, norepinephrine, octopamine and histamine formed by homogenates of Trichostrongylus colubriformis, a nematode parasite from ruminants. Comparative Biochemistry and Physiology 91C, 385–387.

    CAS  Google Scholar 

  • Franks, C.J. (1996) Studies on the actions of the nematode FMRFamide-like neuropeptide PF-1. PhD Thesis, University of Southampton, U.K.

    Google Scholar 

  • Franks, C.J., Walker, R.J., and Holden-Dye, L. (1997) Pharyngeal muscle cell action potentials recorded from Caenorhabditis elegans. Journal of Physiology 504P, 15 P.

    Google Scholar 

  • Franks, C.J., Holden-Dye, L., Williams, R.G., Pang, F.Y., and Walker, R.J. (1994) A nematode FMRFamide-like peptide SDPNFLRFamide (PF1) relaxes the dorsal muscle strip preparation of Ascaris suum. Parasitology 108, 229–236.

    CAS  Google Scholar 

  • Fujisawa, T., Takahashi, T., Yum, S., Halta, M., Shimizu, H., and Koizumi, O. (1999). Systematic identification of neuropeptides in Hydra. Brain Research 848, P1–2, A21.

    Google Scholar 

  • Geary, T.G., Price, D.A., Bowman, J.W., Winterrowd, C.A., MacKenzie, C.D., Garrison, R.D., Williams, J.F., and Friedman, A.R. (1992) Two FMRFamide-like peptides from the free-living nematode Panagrellus redivivus. Peptides 13, 209–214.

    CAS  Google Scholar 

  • Geary, T.G., Sims, S.M., Thomas, E.M., Vanover, L., Davis, J.P., Winterrowd, C.A., Klein, R.D., Ho, N.F.H., and Thompson, D.P. (1993) Haemonchus contortus: ivermectin-induced paralysis of the pharynx. Experimental Parasitology 77, 88–96.

    CAS  Google Scholar 

  • Geary, T.G., Bowman, J.W., Friedman, A.R., Maule, A.G., Davis, J.P., Winterrowd, C.A., Klein, R.D., and Thompson, D.P. (1995) The pharmacology of FMRFamide-related neuropeptides in nematodes: new opportunities for rational anthelmintic discovery? International Journal of Parasitology 25, 1273–1280.

    PubMed  CAS  Google Scholar 

  • Goh, S.L., and Davey, K.G. (1976a) Localization and distribution of catecholaminergic structures in the nervous system of Phocanema decipiens (Nematoda). International Journal of Parasitology 6, 403–411.

    PubMed  CAS  Google Scholar 

  • Goh, S.L., and Davey, K.G. (1976b) Selective uptake of noradrenaline, dopa and 5-hydroxytrypamine by the nervous system of Phocanema decipiens (Nematoda): a light autoradio-graphic and ultrastructural study. Tissue and Cell 8, 421–435.

    PubMed  CAS  Google Scholar 

  • Goldschmidt, R. (1908) Das nervensystem von Ascaris lumbricoides und megalocephala. Zeitchrift fur Wissenschaftliche Zoologie 90, 73–136.

    Google Scholar 

  • Goodman, M.B., Hall, D.H., Avery, L., and Leckery, S.R. (1998) Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron 20, 763–772.

    PubMed  CAS  Google Scholar 

  • Graham, A. (2000) Animal phylogeny: Root and branch surgery. Current Biology 10, R36—R38. Guastella, J., and Stretton, A.O.W. (1991) Distribution of 3H-GABA uptake sites in the nematode Ascaris. Journal of Comparative Neurology 307, 598–608.

    Google Scholar 

  • Guastella, J., Johnson, C.D., and Stretton, A.O.W. (1991) GABA-immunoreactive neurons in the nematode Ascaris. Journal of Comparative Neurology 307, 584–597.

    CAS  Google Scholar 

  • Hamdan, F.F., Ungrin, M.D., Abramovitz, M., and Ribeiro, P. (1999) Characterization of a novel serotonin receptor from Caenorhabditis elegans: Cloning and expression of two splice variants. Journal of Neurochemistry 72, 1372–1383.

    PubMed  CAS  Google Scholar 

  • Harrow, I.D., and Gration, K.A.F. (1985) Mode of action of the anthelmintics morantel, pyrantel and levamisole on muscle-cell membrane Ascaris suum. Pesticide Science 16, 662–672.

    CAS  Google Scholar 

  • Hart, A.C., Sims, S., and Kaplan, J.M. (1995) Synaptic code for sensory modalities revealed by C.elegans GLR-1 glutamate receptor. Nature 378, 82–85.

    PubMed  CAS  Google Scholar 

  • Hejmadi, M.V., Jagannathan, S., Delany, N.S., Coles, G.C., and Wolstenholme, A.J. (2000) L-Glutamate binding sites of parasitic nematodes: an association with ivermectin resistance. Parasitology 120, 535–545.

    PubMed  CAS  Google Scholar 

  • Hewitt, G.M. (1987) Electrophysiological studies on the Ascaris muscle GABA receptor. PhD Thesis, University of Southampton, U.K.

    Google Scholar 

  • Hodgkin, J., Horvitz, H.R., Jasny, B.R., and Kimble, J. (1998) C. elegans: Sequence to Biology. Science 282, 2011.

    Google Scholar 

  • Holden-Dye, L., and Walker, R.J. (1990) Avermectin and avermectin derivatives are antagonists at the 4-aminobutyric acid (GABA) receptor on the somatic muscle cells of Ascaris: is this the site of anthelmintic action. Parasitology 101, 265–271.

    PubMed  CAS  Google Scholar 

  • Holden-Dye, L., Brownlee, D.J.A., and Walker, R.J. (1997) The effects of the peptide KPNFIRFamide (PF4) on the muscle cells of the parasitic nematode Ascaris suum. British Journal of Pharmacology 120, 379–386.

    CAS  Google Scholar 

  • Holden-Dye, L., Krogsgaard-Larsen, P., Nielsen, L., and Walker, R.J. (1989) GABA receptors on the somatic muscle cells of the parasitic nematode Ascaris suum: Stereo selectivity indicates similarity to a GABA-A type agonist recognition site. British Journal of Pharmacology 98, 841–850.

    Google Scholar 

  • Holden-Dye, L., Franks, C.J., Williams, R.G., and Walker, R.J. (1995) The effect of the nematode peptides SDPNFLRFamide (PF1) and SADPNFLRFamide (PF2) on synaptic transmission in the parasitic nematode Ascaris suum. Parasitology 110, 449–455.

    Google Scholar 

  • Horvitz, H.R., Chalfie, M., Trent, C., Sulston, J.E., and Evans, P.D. (1982) Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216, 1012–1014.

    CAS  Google Scholar 

  • Huang, X., Duran, E., Diaz, F., Xiao, H., Messer, W.S., and Komuniecki, R. (1999) Alternative splicing of serotonin receptor isoforms in the pharynx and muscle of the parasitic nematode, Ascaris suum. Molecular and Biochemical Parasitology, 101, 95–106.

    CAS  Google Scholar 

  • Huang, X., Xiao, H., Rex, E., Hinman, C., Messer, W.S., and Komuniecki, R.W. (2000) Alternative-splicing of 5HT-2 receptor isoforms in the pharynx and muscle of the parasitic nematode, Ascaris suum. Society of Neuroscience Abstracts 26, 1425.

    Google Scholar 

  • Isaac, R.E., Muimo, R., and MacGregor, A.N. (1990). N-acetylation of serotonin, octopamine and dopamine by adult Brugia pahangi. Molecular and Biochemical Parasitology 43, 193–199.

    CAS  Google Scholar 

  • Isaac, R.E., MacGregor, D., and Coates, D. (1996) Metabolism and inactivation of neurotransmitters in nematodes. Parasitology 113, S157 — S173.

    PubMed  Google Scholar 

  • Isaac, R.E., Eaves, L., Muimo, R., and Lamango, N. (1991) N-acetylation of biogenic amines in Ascaridia galli. Parasitology 102, 445–450.

    CAS  Google Scholar 

  • Jagannathan, S., Laughton, D.L., Cirtten, C.L., Skinner, T.M., Horoszok, L., and Wolstenholme, A.J. (1999) Ligand-gated chloride channel subunits encoded by the Haemonchus contortus and Ascaris suum orthologues of the Caenorhabditis elegans gbr-2 (avr-14) gene. Molecular and Biochemical Parasitology 103, 129–140.

    PubMed  CAS  Google Scholar 

  • Jarman, M. (1959) Electrical activity in the muscle cells of Ascaris lumbricoides. Nature 184, 1244.

    Google Scholar 

  • Johnson, C.D., and Stretton, A.O.W. (1985) Localization of choline acetyltransferase within iden-tified motorneurones of the nematode Ascaris. Journal of Neuroscience 5, 1984–1992.

    CAS  Google Scholar 

  • Johnson, C.D., and Stretton, A.O.W. (1987) GABA immunoreactivity in inhibitory motorneurones of the nematode Ascaris. Journal of Neuroscience 7, 223–235.

    CAS  Google Scholar 

  • Johnson, C.D., Reinitz, C.A., Sithigorngul, P., and Stretton, A.O.W. (1996) Neuronal localization of serotonin in the nematode Ascaris suum. Journal of Comparative Neurology 367, 352–360.

    CAS  Google Scholar 

  • Kaiser, L., Geary, T.G., and Williams, J.F. (1998) Dirofilaria immitis and Brugia pahangi: Filarial parasites make nitric oxide. Experimental Parasitology 90, 131–134.

    CAS  Google Scholar 

  • Kass, I.S., Wang, C.C., Walrond, J.P., and Stretton, A.O.W. (1980) Avermectin Bla, a paralysing anthelmintic that affects interneurons and inhibitory motoneurons in Ascaris. Proceedings of the National Academy of Sciences USA 77, 6211–6215.

    CAS  Google Scholar 

  • Keating, C.D.I. (1996) The identification of, and studies on, a FMRF-NH2-related peptide from the nematode Haemonchus contortus. PhD Thesis, University of Southampton, U.K.

    Google Scholar 

  • Keating, C.D., Holden-Dye, L.M., and Walker, R.J. (1996) Investigation of the mode of action of nematode neuropeptides. Pesticide Science 46, 263–266.

    CAS  Google Scholar 

  • Keating, C.D., Holden-Dye, L., Thorndyke, M.C., Williams, R.G., Mallett, A., and Walker, R.J. (1995) The FMRFamide-like neuropeptide AF2 is present in the parasitic nematode Haemonchus contortus. Parasitology 111, 515–521.

    CAS  Google Scholar 

  • Kubiak, T.M., Maule, A.G., Marks, N.J., Martin, R.A., and Wiest, J.R. (1996) Importance of the proline residue to the functional activity and metabolic stability of the nematode FMRFamiderelated peptide, KPNFIRFamide (PF4). Peptides 17, 1267–1277.

    PubMed  CAS  Google Scholar 

  • Laughton, D.L., Lunt, G.G., and Wolstenholme, A.J. (1997) Reporter gene constructs suggest that the Caenorhabditis elegans avermectin receptor 13-subunit is expressed solely in the pharynx. Journal of Experimental Biology 200, 1509–1514.

    PubMed  CAS  Google Scholar 

  • Lee, D.L. (1962) The distribution of esterase enzymes in Ascaris lumbricoides. Parasitology 52, 241–260.

    Google Scholar 

  • Li, C., Kim, K., and Nelson, L.S. (1999) FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Brain Research 848, 26–34.

    PubMed  CAS  Google Scholar 

  • Li, C., Nelson, L.S., Kim, K., Nathoo, A., and Hart, A.C. (1999) Neuropeptide gene families in the nematode Caenorhabditis elegans. Annals of the New York Academy of Sciences 897, 239–252.

    CAS  Google Scholar 

  • Maricq, A.V., Peckol, E., Driscoll, M., and Bargmann, C.I. (1995) Mechanosensory signalling in C.elegans mediated by GLR-1 glutamate receptor. Nature 378, 78–81.

    PubMed  CAS  Google Scholar 

  • Marks, N.J., Maule, A.G., Geary, T.G., Thompson, D.P., Davis, J.P., Halton, D.W., Verhaert, P., and Shaw, C. (1997) APEASPFIRFamide, a novel FMRFamide-related decapeptide from Caenorhabditis elegans: Structure and myoactivity. Biochemical and Biophysical Research Communications 231, 591–595.

    PubMed  CAS  Google Scholar 

  • Marks, N.J., Maule, A.G., Li, C., Nelson, L.S., Thompson, D.P. Alexander-Bowman, S., Geary, T.G., Halton, D.W., Verhaert, P., and Shaw, C. (1999) Isolation, pharmacology and gene organization of KPSFVRFamide: A neuropeptide from Caenorhabditis elegans. Biochemical and Biophysical Research Communications 254 222–230.

    Google Scholar 

  • Martin, R.J. (1980) The effect of g-aminobutyric acid on the input conductance and membrane potential of Ascaris muscle. British Journal of Pharmacology 71, 99–106.

    PubMed  CAS  Google Scholar 

  • Martin, R.J. (1982) Electrophysiological effects of piperazine and diethylcarbamazine on Ascaris suum somatic muscle. British Journal of Pharmacology 77, 255–26.

    PubMed  CAS  Google Scholar 

  • Martin, R.J., and Pennington, A.J. (1989) A patch-clamp study of effects of dihydroavermectin on Ascaris muscle. British Journal of Pharmacology 98, 747–756.

    PubMed  CAS  Google Scholar 

  • Martin, R.J., and Robertson, A.P. (2000) Electrophysiological investigation of anthelmintic resistance. Parasitology 120, S87 — S94.

    PubMed  Google Scholar 

  • Martin, R.J., Pennington, A.J., Duittoz, A.H., Robertson, S., and Kusel, J.R. (1991) The physiology and pharmacology of neuromuscular transmission in the nematode parasite, Ascaris suum. Parasitology 102, S41 — S58.

    Google Scholar 

  • Martin, R.J., Valkanov, M.A., Dale, V.M.E., Robertson, A.P., and Murray, I. (1996) Electrophysiology of Ascaris muscle and anti-nematodal drug action. Parasitology 113, S137 — S156.

    PubMed  Google Scholar 

  • Maule, A.G., Shaw, C., Bowman, J.W., Halton, D.W., Thompson, D.P., Geary, T.G., and Thim, L. (1994) KSAYMRFamide: A novel FMRFamide-related heptapeptide from the free-living nematode, Panagrellus redivivus, which is myoactive in the parasitic nematode, Ascaris suum. Biochemical and Biophysical Research Communications 200, 973–980.

    PubMed  CAS  Google Scholar 

  • Maule, A.G., Geary, T.G., Bowman, J.W., Marks, N.J., Blair, K.L., Halton, D.W., Shaw, C., and Thompson, D.P. (1995a) Inhibitory effects of nematode FMRFamide-related peptides (FaRPs) on muscle strips from Ascaris suum. Invertebrate Neuroscience 1, 255–265.

    PubMed  CAS  Google Scholar 

  • Maule, A.G., Shaw, C., Bowman, J.W., Halton, D.W., Thompson, D.P., Thim, L., Kubiak, T.M., Martin, R.A., and Geary, T.G. (1995b) Isolation and preliminary biological characterization of KPNFIRFamide, a novel FMRFamide-related peptide from the free-living nematode, Panagrellus redivivus. Peptides 16, 87–93.

    CAS  Google Scholar 

  • Maule, A.G., Geary, T.G., Bowman, J.W., Shaw, C., Halton, D.W., and Thompson, D.P. (1996) The Pharmacology of Nematode FMRFamide-related Peptides. Parasitology Today 12, 351–357. McIntire, S.L., Jorgensen, E., and Horvitz, H.R. (1993a) Genes required for GABA function in Caenorhabditis elegans. Nature 364, 334–337.

    Google Scholar 

  • McIntire, S.L., Jorgensen, E., Kaplan, J., and Horvitz, H.R. (1993b) The GABAergic nervous system of Caenorhabditis elegans. Nature 364, 337–341.

    CAS  Google Scholar 

  • Mellanby, H. (1955) Identification and estimation of acetylcholine in three parasitic nematodes (Ascaris lumbricoides, Litomosoides carnii and the microfilariae of Dirofilaria repens). Parasitology 45, 287–294.

    PubMed  CAS  Google Scholar 

  • Minning, D.M., Gow, A.J., Bonaventura, J., Braun, R., Dewhirst, M., Goldberg, M.E., and Stamler, J.S. (1999) Ascaris haemoglobin is a nitric oxide-activated `deoxygenase’. Nature 401, 497–502.

    CAS  Google Scholar 

  • Mishra, S.K., Sen, R., and Ghatak, S. (1984) Ascaris lumbricoides and Ascaridia galli: biogenic amines in adults and developmental stages. Experimental Parasitology 57, 34–39.

    CAS  Google Scholar 

  • Moroz, L.L., Gillette, R., and Sweedler, J.V. (1999) Single-cell analyses of nitergic neurons in simple nervous systems. Journal of Experimental Biology 202, 333–341.

    PubMed  CAS  Google Scholar 

  • Muller, R., and Baker, J.R. (1990) Medical Parasitology. Lippincott Gower Medical Publishing, Philadelphia London.

    Google Scholar 

  • Muller, U. (1997) The nitric oxide system in insects. Progress in Neurobiology 51, 363–381.

    PubMed  CAS  Google Scholar 

  • Nelson, L.S., Kim, K.Y., Memmott, R.E., and Li, C. (1998) FMRFamide-related gene family in the nematode, Caenorhabditis elegans. Molecular Brain Research 58, 103–111.

    CAS  Google Scholar 

  • Norton, S., and DeBeer, E.J. (1957) Investigation on the action of piperazine on Ascaris lumbricoides. American Journal of Tropical Medicine 6, 898–905.

    CAS  Google Scholar 

  • Nurrish, S., Segalat, L., and Kaplan, J.M. (1999) Serotonin inhibition of synaptic transmission: Gao decreases the abundance of UNC-13 at release sites. Neuron 24, 231–242.

    PubMed  CAS  Google Scholar 

  • Olde, B., and McCrombie, W.R. (1997) Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. Journal of Molecular Neuroscience 8, 53–62.

    CAS  Google Scholar 

  • Paiement, J.P., Prichard, R.K., and Ribeiro, P. (1999) Haemonchus contortus: Characterization of a glutamate binding site in unselected and ivermectin-selected larvae and adults. Experimental Parasitology 92, 32–39.

    CAS  Google Scholar 

  • Pang, F.Y., Mason, J., Holden-Dye, L., Franks, C.J., Williams, R.G., and Walker, R.J. (1995) The effects of the nematode peptide, KHEYLRFamide (AF2) on the somatic musculature of the parasitic nematode Ascaris suum. Parasitology 110, 353–362.

    CAS  Google Scholar 

  • Parri, H.R. (1991) Studies on chloride in the muscle bag cells of Ascaris suum. PhD Thesis, University of Southampton, U.K.

    Google Scholar 

  • Parri, H.R., Holden-Dye, L., and Walker, R.J. (1991) Studies on the ionic selectivity of the GABA operated chloride channel on the somatic muscle bag cells of the parasitic nematode, Ascaris suum. Experimental Physiology 76, 597–606.

    CAS  Google Scholar 

  • Pedder, S.M., and Walker, R.J. (1999) The actions of FXRFamide related neuropeptides on identified neurons from the snail, Helix aspersa. Acta Biologica Hungarica 50, 185–198.

    CAS  Google Scholar 

  • Pemberton, D.J., Franks, C.J., Walker, R.J., and Holden-Dye, L. (2001) Characterization of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCla2 in the function of the native receptor. Molecular Pharmacology 59, 1037–1043.

    PubMed  CAS  Google Scholar 

  • Pfarr, K.M., and Fuhrman, J.A. (2000) Brugia malayi: Localization of Nitric Oxide synthase in a lymphatic filariid. Experimental Parasitology 94, 92–98.

    CAS  Google Scholar 

  • Price, D.A., and Greenberg, M.J. (1977) Structure of a molluscan cardioexcitatory neuropeptide. Science 197, 670–671.

    PubMed  CAS  Google Scholar 

  • Raizen, D.M., and Avery, L. (1994) Electrical activity and behaviour in the pharynx of Caenorhabditis elegans. Neuron 12, 483–495.

    CAS  Google Scholar 

  • Rand, J.B., and Nonet, M.L. (1997) Synaptic Transmission. In: D.L. Riddle, T. Blumenthal, B.J. Meyer, and J.R. Priess (eds.) C. elegans II. Cold Spring Harbor Laboratory Press, New York, pp. 611–644.

    Google Scholar 

  • Ranganathan, R., Cannon, S.C., and Horvitz, H.R. (2000) MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408, 470–475.

    CAS  Google Scholar 

  • Reinitz, C.A., and Stretton, A.O.W. (1996) Behavioural and cellular effects of serotonin on locomo-tion and male mating posture in Ascaris suum. Journal of Comparative Physiology 178, 655–667.

    CAS  Google Scholar 

  • Richmond, J.E., and Jorgensen, E.M. (1999) One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nature Neuroscience 2, 791–797.

    PubMed  CAS  Google Scholar 

  • Rogers, C.M., Franks, C.J., Walker, R.J., and Holden-Dye, L. (2000) A comparison of the actions of octopamine and the nematode neuropeptide SAEPFGTMRFamide on the pharyngeal muscle of the nematode Caenorhabditis elegans. European Journal of Neuroscience 12, Supplement 11, 406.

    Google Scholar 

  • Rohrer, S.P., and Arena, J.P. (1995) Ivermectin interactions with invertebrate ion channels. American Chemical Society (ACS) Symposium Series 591, 264–283.

    CAS  Google Scholar 

  • Rosoff, M.L., Burglin, T.R., and Li, C. (1992) Alternatively spliced transcripts of the flp-1 gene encode distinct FMRFamide-like peptides in Caenorhabditis elegans. Journal of Neuroscience 12, 2356–2361.

    CAS  Google Scholar 

  • Rosoff, M.L., Doble, K.E., Price, D.A., and Li, C. (1993) The flp-1 propeptide is processed into multiple, highly similar FMRFamide-like peptides in Caenorhabditis elegans. Peptides 14, 331–338.

    CAS  Google Scholar 

  • Sajid, M., Isaac, R.E., and Harrow, I.D. (1997) Purification and properties of a membrane amino-peptidase from Ascaris suum muscle that degrades neuropeptides AF1 and AF2. Molecular and Biochemical Parasitology 89, 225–234.

    PubMed  CAS  Google Scholar 

  • Sattelle, D.B., and Culetto, E. (1999) Functional Genetics of Cholinergic Synaptic Transmission in Caenorhabditis elegans. In: D.J. Beadle (ed.) Progress in Neuropharmacology and Neurotoxicology of Pesticides and Drugs. S.C.I., London, pp 146–160.

    Google Scholar 

  • Saz, N.J., and Weil, A. (1962) A pathway of formation of alpha-methylvalerate by Ascaris lumbricoides. Journal of Biological Chemistry 237, 2053–2056.

    PubMed  CAS  Google Scholar 

  • Schaeffer, J.M., and Hains, H.W. (1989) Avermectin binding in Caenorhabditis elegans. A Two-state model for the avermectin binding site. Biochemical Pharmacology 38, 2329–2338.

    PubMed  CAS  Google Scholar 

  • Schafer, W.R., and Kenyon, C.J. (1995) A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 375, 73–78.

    CAS  Google Scholar 

  • Schafer, W.R., Sanchez, B.M., and Kenyon, C.J. (1996) Genes affecting sensitivity to serotonin in Caenorhabditis elegans. Genetics 143, 1219–1230.

    CAS  Google Scholar 

  • Schinkmann, K., and Li, C. (1992) Localization of FMRFamide-like peptides in Caenorhabditis elegans. Journal of Comparative Neurology 316, 251–260.

    PubMed  CAS  Google Scholar 

  • Segerberg, M.A., and Stretton, A.O.W. (1993) Actions of cholinergic drugs on the nematode Ascaris suum: Complex pharmacology of muscle and motorneurons. Journal of General Physiology 101, 271–296.

    PubMed  CAS  Google Scholar 

  • Sharpe, M.J., and Atkinson, H.J. (1980) Improved visualization of dopaminergic neurons in nematodes using the glyoxylic acid fluorescence method. Journal of Zoology 190, 273–284.

    Google Scholar 

  • Smart, D. (1988) Investigations of the synthesis and metabolism of 5-hydroxytryptamine in Ascaridia galli (Nematoda). International Journal of Parasitology 18, 747–752.

    PubMed  CAS  Google Scholar 

  • Stretton, A.O.W. (1992) Signalling systems in the nervous system of the nematode, Ascaris. In: I.R. Duce (ed.) Neurotox 91, Elsevier, pp. 124–138.

    Google Scholar 

  • Stretton, A.O.W., Fishpool, R.M., Southgate, E., Donmoyer, J.E., Walrond, J.P. Moses, J.E.R., and Kass, I.S. (1978) Structure and physiological activity of the motoneurones of the nematode Ascaris. Proceedings of the National Academy of Sciences U.S.A. 75 3493–3497.

    Google Scholar 

  • Stretton, A.O.W., Davis, R.E., Angstadt, J.D., Donmoyer, J.E., and Johnson, C.D. (1985) Neural control of behaviour in Ascaris. Trends in Neuroscience 8, 294–300.

    Google Scholar 

  • Stretton, A.O.W., Cowden, C., Sithigorngul, P., and Davis, R.E. (1991) Neuropeptides in the nematode Ascaris suum. Parasitology 102, S107 — S116.

    Google Scholar 

  • Sulston, J.E., Dew, M., and Brenner, S. (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. Journal of Comparative Neurology 163, 215–226.

    CAS  Google Scholar 

  • Sze, J.Y., Victor, M., Loer, C., Shi, Y., and Ruvkun, G. (2000) Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403, 560–564.

    PubMed  CAS  Google Scholar 

  • Takemoto, T. (1978) Isolation and structural identification of naturally occurring excitatory amino acids. In: McGeer, E.G., Olney, J.W., and McGeer, P.L. (eds.) Kainic acid as a tool in Neurobiology. Raven Press, New York, pp. 1–15.

    Google Scholar 

  • Tornoe, C., Bai, D., Holden-Dye, L., Abramson, S.N., and Sattelle, D.B. (1995) Actions of neurotoxins (bungarotoxins, neosurugatoxin and lophotoxins) on insect and nematode nicotinic acetylcholine receptors. Toxicon 33, 411–424.

    PubMed  CAS  Google Scholar 

  • Trim, N. (1998) Characterization of the effects of FMRFamide-like peptides on the somatic muscle of the parasitic nematodes Ascaris suum and Ascaridia galli. PhD Thesis, University of Southampton, U.K.

    Google Scholar 

  • Trim, N., Holden-Dye, L., Ruddell, R., and Walker, R.J. (1997) The effects of the peptides AF3 (AVPGVLRFamide) and AF4 (GDVPGVLRFamide) on the somatic muscle of the parasitic nematodes Ascaris suum and Ascaridia galli. Parasitology 115, 213–222.

    CAS  Google Scholar 

  • Trim, N., Brooman, J.E., Holden-Dye, L., and Walker, R.J. (1998) The role of cAMP in the actions of the peptide AF3 in the parasitic nematodes Ascaris suum and Ascaridia galli. Molecular and Biochemical Parasitology 93, 263–271.

    CAS  Google Scholar 

  • Trim, J.E., Holden-Dye, L., Willson, J., Lockyer, M., and Walker, R.J. (2001) Characterization of 5-HT receptors in the parasitic nematode, Ascaris suum. Parasitology 122, 207–217.

    CAS  Google Scholar 

  • Trimmer, B.A., Kobierski, L.A., and Kravitz, E.A. (1987) Purification and characterization of FMRFamide-like immunoreactive substances from the lobster nervous system: Isolation and sequence of two closely related peptides. Journal of Comparative Neurology 266, 16–26.

    PubMed  CAS  Google Scholar 

  • Tsang, V.C., and Saz, N.J. (1973) Demonstration and function of 2-methylbutyrate racemase in Ascaris lumbricoides. Comparative Biochemistry and Physiology 45B, 617–623.

    CAS  Google Scholar 

  • Vassilatis, D.K., Arena, J.P., Plasterk, R.H.A., Wilkinson, H.A., Schaeffer, J.M., Cully, D.F., and Van der Ploeg, L.H.T. (1997) Genetic and biochemical evidence for a novel avermectin-sensitive chloride channel in Caenorhabditis elegans. Isolation and characterization. Journal of Biological Chemistry 272, 33167–33174.

    PubMed  CAS  Google Scholar 

  • Vincent, S.R. (1995) Localization of nitric oxide neurons in the central nervous system. In: S.R.

    Google Scholar 

  • Vincent (ed.), Nitric Oxide in the Nervous System. Academic Press, London, pp. 83–102.

    Google Scholar 

  • Walker, R.J., Brooks, H.L., and Holden-Dye, L. (1996) Evolution and overview of classical transmit-ter molecules and their receptors. Parasitology 113, S3 — S33.

    PubMed  Google Scholar 

  • Wann, K.T. (1987) The electrophysiology of the somatic muscle cells of Ascaris suum and Ascaridia galli. Parasitology 94, 555–566.

    Google Scholar 

  • Warbrick, E.V., Rees, H.H. and Howells, R.E. (1992) Immunocytochemical localization of an FMRFamide-like peptide in the filarial nematodes Dirofilaria immitis and Brugia pahangi. Parasitology Research 78 252–256.

    Google Scholar 

  • Weinshenker, D., Garriga, G., and Thomas. J.H. (1995) Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. Journal of Neuroscience 15, 6975–6985. Weisblat, D.A., and Russell, R.L. (1976) Propagation of electrical activity in the nerve cord and muscle syncytium of the nematode Ascaris lumbricoides. Journal of Comparative Physiology 107, 293–307.

    Google Scholar 

  • Weisblat, D.A., Byerly, L., and Russell, R.L. (1976) Ionic mechanisms of electrical activity in the somatic muscle of the nematode Ascaris lumbricoides. Journal of Comparative Physiology 111, 93–113.

    CAS  Google Scholar 

  • White, J.G., Southgate, E., Thompson, J.N., and Brenner, S. (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philosophical Transactions of the Royal Society London B 275, 298–327.

    Google Scholar 

  • White, J.G., Southgate, E., Thompson, J.N., and Brenner, S. (1986) The structure of the nervous system of Caenorhabditis elegans. Philosophical Transactions of the Royal Society London B 314, 1–340.

    Google Scholar 

  • Williams, J.A., Shahkolaki, A.M., Abbassi, M., and Donahue, M.J. (1992) Identification of a novel 5-HTN (Nematode) receptor from Ascaris suum muscle. Comparative Biochemistry and Physiology 101C, 469–474.

    CAS  Google Scholar 

  • Woodruff, G.N., Walker, R.J., and Newton, L.C. (1971) The actions of some muscarinic and nicotinic agonists on the Retzius cells of the leech. Comparative and General Pharmacology 2, 106–117.

    PubMed  CAS  Google Scholar 

  • Wright, D.J., and Awan, F.A. (1978) Catecholaminergic structures in the nervous system of threenematode species, with observations on related enzymes. Journal of Zoology 185, 477–489.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walker, R.J., Rogers, C.M., Franks, C.J., Holden-Dye, L. (2004). Electrophysiological and Pharmacological Studies on Excitable Tissues in Nematodes. In: Fairweather, I. (eds) Cell Signalling in Prokaryotes and Lower Metazoa. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0998-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0998-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6483-7

  • Online ISBN: 978-94-017-0998-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics