Skip to main content

Aging in Sponges

  • Chapter
Aging of Organisms

Part of the book series: Biology of Aging and its Modulation ((BIMO,volume 4))

Abstract

The sponges (phylum Porifera) are the lowest and phylogenetically oldest, still extant phylum of Metazoa [1, 2]. These animals are considered as the evolutionary earliest living relicts of the successful transition from the (perhaps) unicellular to the multicellular state [2]. Evidence has been presented by molecular phylogenetic analysis that sponges share a common ancestor with the other metazoan phyla, the hypothetical Urmetazoa [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Müller WEG (1995). Molecular phylogeny of Metazoa (animals): monophyletic origin. Naturwiss 82: 321–9.

    Article  PubMed  Google Scholar 

  2. Muller WEG (1998). Origin of Metazoa: sponges as living fossils. Naturwiss 85: 11–25.

    Article  PubMed  CAS  Google Scholar 

  3. Muller WEG (2001). How was metazoan threshold crossed: the hypothetical Urmetazoa. Comp Biochem Physiol A 129: 433–60.

    Article  CAS  Google Scholar 

  4. Muller WEG (1997). Origin of metazoan adhesion molecules and adhesion receptors as deduced from their cDNA analyses from the marine sponge Geodia cydonium. Cell Tissue Res. 289: 383–95.

    Article  CAS  Google Scholar 

  5. Muller WEG, Blumbach B, Muller IM (1999). Evolution of the innate and adaptive immune systems: relationships between potential immune molecules in the lowest metazoan phylum [Porifera] and those in vertebrates. Transplantation 68: 1215–27.

    Article  PubMed  CAS  Google Scholar 

  6. Krasko A, Lorenz B, Batel R, Schroder HC, Muller IM, Muller WEG (2000). Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem. 267: 4878–87.

    Article  PubMed  CAS  Google Scholar 

  7. Schroder HC, Krasko A, Batel R, et al. (2000). Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEBJ. 14: 2022–31.

    Article  CAS  Google Scholar 

  8. Lehnert H, Reitner J (1997). Lebensdauer und Regeneration bei Ceratoporella nicholsoni (Hickson, 1911) und Spirastrella (Acanthochaetetes) wellsi (Hartman Goreau, 1975). Geol Bl NO-Bayern 47: 265–72.

    Google Scholar 

  9. Goldstein S (1990). Replicative senescence: the human fibroblast comes of age. Science 249: 1129–33.

    Article  PubMed  CAS  Google Scholar 

  10. Strehler BL (1986). Genetic instability as the primary cause of human aging. Exp Gerontol. 21: 283–319.

    Article  PubMed  CAS  Google Scholar 

  11. Harley CB, Futcher AB, Greider CW (1990). Telomeres shorten during ageing of human fibroblasts. Nature 345: 458–60.

    Article  PubMed  CAS  Google Scholar 

  12. Harley CB (1995). Telomeres in aging. In: Blackburn EH, Greider CW, eds. Telomeres. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, pp. 247–63.

    Google Scholar 

  13. Custodio MR, Prokic I, Steffen R, et al. (1998). Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech Ageing Dev. 105: 45–59.

    Article  PubMed  CAS  Google Scholar 

  14. Müller WEG, Wiens M, Batel R, etal. (1999). Establishment of a primary cell culture from a sponge: primorphs from Suberites domuncula. Mar Ecol Prog Ser. 178: 205–19.

    Google Scholar 

  15. Muller WEG, Böhm M, Batel R, et al. (2000). Application of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara. J Nat Prod. 63: 1077–81.

    Article  CAS  Google Scholar 

  16. Kruse M, Batel R, Steffen R, Schroder HC, Muller IM, Muller WEG (2000). Sponge homologue of human and yeast gene encoding the longevity assurance polypeptide: differential expression in telomerase-positive and telomerase-negative cells of Suberites domuncula. Mech Ageing Dev. 118: 115–27.

    Article  CAS  Google Scholar 

  17. Muller WEG, Muller IM (2003). Analysis of the sponge (Porifera) gene repertoire: implications for the evolution of the metazoan body plan. In: Muller WEG, ed. Marine Molecular Biotechnology: Sponges (Porifera). Berlin: Springer Press, pp. 1–33.

    Chapter  Google Scholar 

  18. Wimmer W, Perovic S, Kruse M, et al. (1999). Origin of the integrin-mediated signal transduction–functional studies with cell cultures from the sponge Suberites domuncula. Eur JBiochem. 260: 156–65.

    Article  CAS  Google Scholar 

  19. Hayflick L, Moorhead PS (1961). The serial cultivation of human diploid cell strains. Exp Cell Res. 25: 585–621.

    Article  PubMed  CAS  Google Scholar 

  20. Mortimer RK, Johnston JR (1959). Life span of individual yeast cells. Nature 183: 40711.

    Article  Google Scholar 

  21. Diaz JP (1979). Variations, differentiations et fonctions des categories cellulaires de la demosponge d’eaux saumatres, Suberites massa, Nardo, au cours du cycle biologique annuel et dans des conditions experimentales. Universite des Sciences et Techniques du Languedoc (Montpellier), p. 332.

    Google Scholar 

  22. Finch CE (1990). Longevity, Senescence, and the Genome. Chicago: The University of Chicago Press.

    Google Scholar 

  23. Koziol C, Borojevic R, Steffen R, Muller WEG (1998). Sponges (Porifera) model systems to study the shift from immortal to senescent somatic cells: the telomerase activity in somatic cells. Mech Ageing Dev. 100: 107–20.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson TE, Shook D, Murakami S, Cypser J (1999). Increased resistance to stress is a marker for gerontogenes leading to increased health and longevity in nematodes. In: Bohr VA, Clark BFC, Strevnsner T, eds. Molecular Biology of Aging. Copenhagen: Munks-gaard, pp. 25–34.

    Google Scholar 

  25. Wadhawa R, Kaul SC, Mitsui Y (1999). Cellular mortality and immortalization: a complex interplay of multiple gene functions. Prog Molec Subcell Biol. 24: 191–204.

    Article  Google Scholar 

  26. Jiang JC, Kirchman PA, Zagulski M, Hunt J, Jazwinski SM (1998). Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human. Genome Res. 8: 1259–72.

    Article  PubMed  CAS  Google Scholar 

  27. Counter CM, Avilion AA, LeFeuvre CE, et al. (1992). Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBOJ. 11: 1921–9.

    CAS  Google Scholar 

  28. Hastie ND, Dempster M, Dunlop AG, Thompson AM, Green DK, Allshire RC (1990). Telomere reduction in human colorectal carcinoma and with ageing. Nature 346: 866–8.

    Article  PubMed  CAS  Google Scholar 

  29. Harley CB (1999). Telomerase immortalize normal human cells. In: Bohr VA, Clark BCF, Stevnsner T, eds. The Molecular Biology of Aging. Copenhagen: Munksgaard.

    Google Scholar 

  30. D’Mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C, Jazwinski SM (1994). Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem. 269: 15451–9.

    PubMed  Google Scholar 

  31. Chanda ER, Lingner C, Ko Z, Young PG. Direct Submission to the EMBL data bank (NOV-1996).

    Google Scholar 

  32. Schroder HC, Kruse M, Batel R, Muller IM, Muller WEG (2000). Cloning and expression of the sponge longevity gene SDLAGL. Mech Dev. 95: 219–20.

    Article  CAS  Google Scholar 

  33. Simpson TL (1984). The Cell Biology of Sponges. New York: Springer-Verlag.

    Book  Google Scholar 

  34. Wagner C, Steffen R, Koziol C, et al. (1998). Apoptosis in marine sponges: a biomarker for environmental stress (cadmium and bacteria). Mar Biol. 131: 411–21.

    Article  CAS  Google Scholar 

  35. Batel R, Bihari N, Rinkevich B, et al. (1993). Modulation of organotin-induced apoptosis by the water pollutant methyl mercury in a human lymphoblastoid tumor cell line and a marine sponge. Mar Ecol Prog Ser. 93: 245–51.

    Article  Google Scholar 

  36. Thompson CB (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–62.

    Article  PubMed  CAS  Google Scholar 

  37. Wiens M, Seack J, Koziol C, et al. (1999). 17ß-Estradiol-dependent regulation of chaperone expression and telomerase activity in the marine sponge Geodia cydonium. Mar Biol. 133: 1–10.

    Google Scholar 

  38. Pfeifer K, Schroder HC, Rinkevich B, et al. (1992). Immunological and biological identification of tumor necrosis factor in sponges: role of this factor in the formation of necrosis in xenografts. Cytokine 4: 161–9.

    Article  PubMed  CAS  Google Scholar 

  39. Smith CA, Farrah T, Goodwin RG (1994). The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76: 959–62.

    Article  PubMed  CAS  Google Scholar 

  40. Itoh N, Nagata S (1993). A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. JBiol Chem. 268: 10932–7.

    CAS  Google Scholar 

  41. Tartaglia LA, Ayres TM, Wong GHW, Goeddel DV (1993). A novel domain within the 55 kd TNF receptor signals cell death. Cell 74: 845–53.

    Article  PubMed  CAS  Google Scholar 

  42. Cleveland JL, Ihle JN (1995). Contenders in FasL/TNF death signaling. Cell 81: 479–82.

    Article  PubMed  CAS  Google Scholar 

  43. Ashkenazi A, Dixit VM (1998). Death receptors: signaling and modulation. Science 281: 1305–8.

    Article  PubMed  CAS  Google Scholar 

  44. Wiens M, Krasko A, Muller IM, Muller, WEG (2000). Increased expression of the potential proapoptofic molecule DD2 and increased synthesis of leukotriene B4 during allograft rejection in a marine sponge. Cell Death Differ. 7: 461–9.

    Article  PubMed  CAS  Google Scholar 

  45. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D (1995). A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem. 270: 7795–8.

    Article  PubMed  CAS  Google Scholar 

  46. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995). FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505–12.

    Article  PubMed  CAS  Google Scholar 

  47. Mason DM, Morris PJ (1986). Effector mechanisms in allograft rejection. Annu Rev Immunol. 4: 119–45.

    Article  PubMed  CAS  Google Scholar 

  48. Wiens M, Krasko A, Muller CI, Muller WEG (2000). Molecular evolution of apoptotic pathways: cloning of key domains from sponges (Bcl-2 homology domains and death domains) and their phylogenetic relationships. J Mol Evol. 20: 520–31.

    Google Scholar 

  49. Blumbach B, Diehl-Seifert B, Seack J, Steffen R, Muller IM, Muller WEG (1999). Cloning and expression of novel molecules belonging to the immunoglobulin superfamily from the marine sponge Geodia cydonium: putative cell recognition molecules. Immunogenetics 49: 751–63.

    Article  PubMed  CAS  Google Scholar 

  50. Adams JM, Cory S (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281: 1322–6.

    Article  PubMed  CAS  Google Scholar 

  51. Cleary ML, Sklar J (1985). Nucleotide sequence of a t(14; 18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcrip-tionally active locus on chromosome 18. Proc Natl Acad Sci USA 82: 7439–43.

    Article  PubMed  CAS  Google Scholar 

  52. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–19.

    Article  PubMed  CAS  Google Scholar 

  53. Sato T, Irie S, Krajewski S, Reed JC (1994). Cloning and sequencing of a cDNA encoding the rat Bcl-2 protein. Gene 140: 291–2.

    Article  PubMed  CAS  Google Scholar 

  54. Wiens M, Diehl-Seifert B, Muller WEG (2001). Sponge Bcl-2 homologous protein (BHP2- GC) confers distinct stress resistance to human HEK-293 cells. Cell Death Diff. 8: 887–98.

    Article  CAS  Google Scholar 

  55. Williams GT, Smith CA (1993). Molecular regulation of apoptosis: genetic controls on cell death. Cell 74: 777–9.

    Article  PubMed  CAS  Google Scholar 

  56. Shiraiwa N, Inohara N, Okada S, Yuzaki M, Shoji SI, Ohta S (1996). An additional form of rat Bcl-x, Bcl-xb, generated by an unspliced RNA, promotes apoptosis in promyeloid cells. J Biol Chem. 271: 13258–65.

    Article  PubMed  CAS  Google Scholar 

  57. Hengartner MO, Horvitz HR (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76: 665–76.

    CAS  Google Scholar 

  58. Yang E, Korsmeyer SJ (1996). Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 88: 386–401.

    PubMed  CAS  Google Scholar 

  59. Madeo F, Frohlich E, Ligr M, et al. (1999). Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol. 145: 757–67.

    Article  PubMed  CAS  Google Scholar 

  60. Earnshaw WC, LM Martins, SH Kaufmann (1999). Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Ann Rev Biochem. 68: 383–424.

    Article  PubMed  CAS  Google Scholar 

  61. Cory S, Adams JM (1998). Matters of life and death: programmed cell death at Cold Spring Harbor. Biochim Biophys Acta 1377: R25–44.

    PubMed  CAS  Google Scholar 

  62. Kumar S, Colussi PS (1999). Prodomains–adaptors–oligomerization: the pursuit of caspase activation in apoptosis. Trends Biochem Sci. 24: 1–4.

    Article  PubMed  CAS  Google Scholar 

  63. Villa P, Kaufmann SH, Earnshaw WC (1997). Caspases and caspase inhibitors. Trends Biochem Sci. 22: 388–93.

    Article  PubMed  CAS  Google Scholar 

  64. Hofmann K, Tschopp J, Bucher P (1997). The CARD domain: a new apoptotic signalling motif. Trends Biochem Sci. 22: 155–6.

    Article  PubMed  CAS  Google Scholar 

  65. Aitken A, Jones D, Soneji Y, Howell S (1995). 14–3–3 proteins: biological function and domain structure. Biochem Soc Trans. 23: 605 – 11.

    Google Scholar 

  66. Wiens M, Koziol C, Hassanein HMA, Batel R, Schroder HC, Muller WEG (1998) Induction of gene expression of the chaperones 14–3–3 and HSP70 by PCB118 (2,3’,4,4’,5–pentachlorobiphenyl) in the marine sponge Geodia cydonium: novel biomar–kers for polychlorinated biphenyls. Mar Ecol Prog Ser. 165: 247 – 57.

    Article  CAS  Google Scholar 

  67. Coffey RG. ed. (1992). Granulocyte Response to Cytokines. New York: Marcel Dekker, New York, pp. 47–76.

    Google Scholar 

  68. Needleman P, Turk J, Jakschik BA, Mordson AR, Lekowith JB (1986). Arachidonic acid metabolism. Annu Rev Biochem. 55: 69–102.

    Article  PubMed  CAS  Google Scholar 

  69. Gallin JI, Goldstein IM, Snyderman R, eds. (1992). Inflammation: Basic Principles and Clinical Correlates, 2nd edn. New York: Raven Press.

    Google Scholar 

  70. Chabannes B, Perraut C, El-Habib R, Moliere P, Pacheco Y, Lagarde M (1997). Correlation between arachidonic acid oxygenation and luminol-induced chemilumines-cence in neutrophils: inhibition by diethyldithiocarbamate. Biochem Pharmacol. 53: 92735.

    Article  Google Scholar 

  71. Schroder HC, Sudek S, de Caro S, et al. (2002). Synthesis of the neurotoxin quinolinic acid in apoptotic tissue from Suberites domuncula: cell biological, molecular biological and chemical analysis. Mar Biotechnol. 4: 546–58.

    Article  PubMed  Google Scholar 

  72. Krogsgaard-Larsen P, Madsen U, Ebert B, Hansen JJ (1992). Excitatory amino acid receptors: multiplicity and ligand specificity of receptor subtypes. In: Krogsgaard-Larsen P, Hansen JJ, eds. Excitatory Amino Acid Receptors. New York: Ellis Horwood Press, pp. 34–55.

    Google Scholar 

  73. Gamulin V, Peden JF, Muller IM, Muller WEG (2001). Codon usage in the siliceous sponge Geodia cydonium: highly expressed genes in the simplest multicellular animal prefer C- and G-ending codons. J Zool Evol Res. 39: 1–6.

    Article  Google Scholar 

  74. Muller WEG, Schroder HC, Skorokhod A, Bunz C, Muller IM, Grebenjuk VA (2001). Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa). Gene 276: 161–73.

    Article  PubMed  CAS  Google Scholar 

  75. Wiens M, Kuusksalu A, Kelve M, Muller WEG (1999). Origin of the interferon-inducible (2’-5’)oligoadenylate synthetases: cloning of the (2’-5’)oligoadenylate synthetase from the marine sponge Geodia cydonium. FEBS Lett. 462: 12–18.

    Article  CAS  Google Scholar 

  76. Krasko A, Muller IM, Muller WEG (1997). Evolutionary relationships of the metazoan ßy-crystallins, including the one from the marine sponge Geodia cydonium. Proc Royal Soc LondB 264: 1077–84.

    Article  CAS  Google Scholar 

  77. Harley CB (1991). Telomere loss: mitotic clock or genetic time bomb? Mutat Res. 256: 271–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schröder, H.C., Wiens, M., Müller, W.E.G. (2003). Aging in Sponges. In: Osiewacz, H.D. (eds) Aging of Organisms. Biology of Aging and its Modulation, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0671-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0671-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6332-8

  • Online ISBN: 978-94-017-0671-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics