Skip to main content

Part of the book series: Proceedings of the Phytochemical Society of Europe ((PPSE,volume 47))

  • 703 Accesses

Abstract

Nature has been a source of medicinal treatments for thousands of years. While plants were the major source of medicines for millennia, the discovery of the penicillins in the 1930s ushered in the golden age of antibiotics and a revolution in chemotherapy. More recently, marine organisms have provided a host of novel bioactive chemotypes. Advances in the description of the human genome, as well as the genomes of pathogenic microbes and parasites, are resulting in the determination of the structures of many of the proteins associated with disease processes. Novel molecular targets based on these proteins are being developed as high throughput assays, which require expanded and novel chemical diversity for screening. Much of the world’s biological diversity remains unexplored as a source of novel drug leads, and the search for new bioactive agents from natural sources, including extreme environmental niches, is expanding. The potential for drug discovery is being further enhanced, with advances in procedures for microbial cultivation and the extraction of nucleic acids from environmental samples providing access to the vast untapped reservoir of microbial genetic and metabolic diversity. Genetic manipulation of microbial biosynthetic pathways is further expanding this potential to include the biosynthesis of bioactive products not generated naturally. The unique molecules generated by nature provide scaffolds for elaboration by combinatorial chemical techniques, as well as challenges to organic chemists, not only in their total synthesis, but also in the identification of simpler pharmacophores, which may prove to be equal or more effective chemotherapeutic agents. Nature thus provides access to unique molecular diversity, but the investigation of these resources requires multi-disciplinary, international collaboration in the discovery and development process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M.W. & Kelly, R.M. (1998). Finding and using hyperthermophilic enzymes. Trends in Biotech., 16, 329–332.

    Article  CAS  Google Scholar 

  • Anonymous (1999). New Treatment for CML could be Model for Molecular Target-Based Therapeutics. The Cancer Letter, 25, 1–4.

    Google Scholar 

  • Baker, J.T., Borris, R.P., Carte, B., Gupta, M.P., Iwu, M.M., Madulid, D.R. & Tyler, V.E. (1995). Natural product drug discovery and development: New perspectives on international collaboration. J. Nat. Prod., 58, 1325–1357.

    Article  CAS  Google Scholar 

  • Balandrin, M.F., Kinghorn, A.D. & Farnsworth, N.R (1993). Plant-derived natural products in drug discovery and development. An overview, in Human Medicinal Agents from Plants. In A.D. Kinghorn & M.F. Balandrin (Eds.), Amer. Chem. Soc. Symposium Series, No 534, 2–12. Washington, DC: Amer. Chem. Soc..

    Google Scholar 

  • Borman, S. (1999). Four types of natural products that stabilize cell microtubules share structural features. C&EN, 35–36.

    Google Scholar 

  • Buss, A.D. & Waigh, R.D. (1995). Natural Products as leads for new pharmaceuticals. In M.E. Wolff (Ed.), Burgers Medicinal Chemistry and Drug Discovery (5th ed., pp. 983–1033 ). New York: WileyInterscience.

    Google Scholar 

  • Carte, B.K. (1996). Biomedical Potential of Marine Natural Products. Bio-Science, 46, 271–286.

    Google Scholar 

  • Chang, H.M. & But, P.H. (1986). Pharmacology and Applications of Chinese Materia Medica. Singapore: World Scientific Publishing.

    Google Scholar 

  • Colwell, R.R. (1997). Microbial diversity: the importance of exploration and conservation. J. Ind. MicrobioL Biotech., 18, 302–307.

    Article  CAS  Google Scholar 

  • Cortes, J.E. & Pazdur, R. (1995). Docetaxel. J. Clin. Oncol., 13, 2643–2655.

    CAS  Google Scholar 

  • Cragg, G.M., Schepartz, S.A., Suffness, M. & Greyer, M.R. (1993). The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J. Nat. Prod., 56, 1657–1668.

    Article  CAS  Google Scholar 

  • Cragg, G.M., Boyd, M.R., Cardellina II, J.H., Newman, D.J., Snader, K.M. & McCloud, T.G. (1994). Ethnobotany and drug discovery: the experience of the US National Cancer Institute. In D.J. Chadwick & J. Marsh (Eds.), Ethnobotany and the Search for New Drugs, Ciba Foundation Symposium (pp. 178–196). Chichester, U.K.: Wiley & Sons.

    Google Scholar 

  • Cragg, G.M., Newman, D.J. & Snader, K.M. (1997). Natural Products in Drug Discovery and Development. J. Nat. Prod., 60, 52–60.

    Article  CAS  Google Scholar 

  • Cragg, G.M., Boyd, M.R., Khanna, R., Newman, D.J. & Sausville, E.A. (1999). Natural Products Drug Discovery and Development. The United States National Cancer Institute Role. In J. Romeo (Ed.), Phytochemicals in Human Health (pp.1–29). New York:.Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Daly, J.W. (1998). Thirty years of discovering arthropod alkaloids in amphibian skin. J. Nat. Prod., 61, 162–172.

    Article  CAS  Google Scholar 

  • Farnsworth, N.R., Akerele, O., Binge], A.S., Soejarto, D.D. & Guo, Z. (1985). Medicinal plants in therapy. Bull. WHO, 63, 965–981.

    Google Scholar 

  • Foye, W.O. (Ed.) (1995). Cancer Chemotherapeutic Agents. ACS Professional Reference Book. Washington, D. C.: Amer. Chem. Soc.

    Google Scholar 

  • Gokhale, R.S., Tsuji, S.Y., Cane, D.E. & Khosla, C. (1999). Dissecting and exploiting intermodular communication in polyketide synthases. Science, 284, 482–485.

    Article  CAS  Google Scholar 

  • Haar, E., Kowalski, R.J., Lin, C.M., Longley, R.E., Gunasekera, S.P., Rosenkranz, H.S. & Day, B.W. (1996). Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry, 35, 243–250.

    Article  Google Scholar 

  • Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J. & Goodman, R.M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol., 5, R245–249.

    Article  CAS  Google Scholar 

  • Hartwell, J.L. (1982). Plants Used Against Cancer. Quarterman, Lawrence, MA.

    Google Scholar 

  • Horan, A.C. (1994). Actinomycetes: A continuous source of novel natural products. In V.P. Gullo (Ed.), The Discovery of Natural Products with Therapeutic Potential (pp. 3–30 ). Boston: Butterworth-Heinemann.

    Google Scholar 

  • Hutchinson, C.R. (1999). Microbial polyketide synthases: more and more prolific. Proc. Natl. Acad. Sci. USA, 96, 3336–3338.

    Article  CAS  Google Scholar 

  • Kapoor, L.D. (1990). CRC Handbook of Ayurvedic Medicinal Plants. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Long, B.H., Carboni, J.M., Wasserman, A.J., Cornell, L.A., Casazza, A.M., Jensen, P.R., Lindel, T., Fenical, W. & Fairchild, C.R. (1998). Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitxel. Cancer Res., 58, 1111–1115.

    CAS  Google Scholar 

  • Lutz, R.A. &. Kennish, M.J. (1993). Ecology of deep-sea hydrothermal vent communities: A review. Reviews of Geophysics, 31, 211–242.

    Google Scholar 

  • Lutz, RA, Shank, T.M. & Fornari, D.J. (1994). Rapid growth at deep sea vents. Nature, 371, 663–664.

    Article  Google Scholar 

  • Martinez, E.J., Owa, T., Schreiber, S.L. & Corey, E.J. (1999). Phthalascidin, a synthetic antitumor agent with potency and mode of action comparable to ecteinascidin 743. Proc. Natl. Acad. Sci. USA, 96, 3496–3501.

    Article  CAS  Google Scholar 

  • Mays, T.D., Mazan, K.D., Cragg, G.M. & Boyd, M.R. (1997). “Triangular Privity”- A Working Paradigm for the Equitable Sharing of Benefits from Biodiversity Research and Development. In K.E. Hoagland & A.Y. Rossman (Eds.), Global Genetic Resources: Access, Ownership, and Intellectual Property Rights (pp. 279–298 ). Washington, D. C.: Association of Systematics Collections.

    Google Scholar 

  • McConnell, O., Longley, R.E. & Koehn, F.E. (1994). The discovery of marine natural products with therapeutic potential. In V.P. Gullo (Ed.), The Discovery of Natural Products with Therapeutic Potential (pp. 109–174 ). Boston: Butterworth-Heinemann.

    Google Scholar 

  • Molnar, I., Schupp, T., Ono, M., Zirkle, R.E., Milnamow, M., Nowak-Thompson, B., Engel, N., Toupet, C., Stratmann, A, Cyr, D.D., Gorlach, J., Mayo, J.M., Hu, A, Goff, S., Schmid, J. & Ligon, J.M. (2000). The biosynthetic gene cluster for the microtubule-stabilizing agent epothilones A and B from Sorangium cellulosum So ce90. Chem. Biol., 7, 97–109.

    Article  CAS  Google Scholar 

  • Nicolaou, K.C., Kim, S., Pfefferkorn, J., Xu, J., Oshima, T., Hosokawa, S. & Li, T. (1998a). Synthesis and biological activity of sarcodictyins. Angew. Chem. Int. Ed., 37, 1418–1421.

    Article  CAS  Google Scholar 

  • Nicolaou, K.C., Roschangar, F. & Vourloumis, D. (1998b). Chemical Biology of Epothilones. Angew. Chem. Int. Ed., 37, 2014–2045.

    Article  CAS  Google Scholar 

  • Olivera, B.M. (1997). Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol. Biol. Cell, 8, 1–9.

    Google Scholar 

  • Persidis, A. (1998). Extremophiles. Nature Biotech., 16, 593–594.

    Article  CAS  Google Scholar 

  • Philip, P.A., Rea, D., Thavasu, P., Cannichel, J., Stuart, N.S.A., Rockett, H., Talbot, D.C., Ganesan, T., Pettit, G.R., Balkwill, F. & Harris, A.L. (1993) Phase I study of bryostatin 1: Assessment of interleukin 6 and tumor necrosis factor alpha induction in vivo. J. Natl. Canc. Inst., 85,1812–1818.

    Google Scholar 

  • Potmeisel, M. & Pinedo, H. (1995). Camptothecins: New Anticancer Agents. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Psenner, R. & Sattler, B. (1998). Life at the freezing point. Science, 280, 2073–2074.

    Article  CAS  Google Scholar 

  • Schreiber, S.L. (1998). Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg. Med. Chem., 6, 1127–1152.

    Article  CAS  Google Scholar 

  • Schreiber, S.L., Tan, D.S., Foley, M.A. & Shair, M.D. (1998). Stereoselective synthesis of over two million compounds having structural features both eminiscent of natural products and compatible with miniaturized cell-based assays. J. Amer. Chem. Soc., 120, 8565–8566.

    Article  Google Scholar 

  • Service, R.F. (1999). Race for molecular summits. Science, 285, 184–187.

    Article  CAS  Google Scholar 

  • Wender, P.A., DeBrabander, Jiminez, J.-M., Koehler, M.F.T., Lippa, B., Park, C.-M., Siedenbiedel, C. & Pettit, G.R. (1998). The design, computer modeling solution structure, and biological evaluation of synthetic analogs of bryostatin 1. Proc. Natl. Acad. Sci. USA, 95, 6624–6629.

    Article  CAS  Google Scholar 

  • Young, P. (1997). Major microbial diversity initiative recommended. ASM News, 63, 417–421.

    Google Scholar 

  • Zhang, B., Salituro, G., Szalkowski, D., Zhang, Z., Li, Y., Royo, 1., Vilella, D., Diez, M.T., Pelaez, F., Ruby, C., Kendall, R.L., Mao, X., Griffin, P., Calaycay, J., Zierath, J., Heck, J.V., Smith, R.G. & Moller, D.E. (1999). Discovery of a Small Molecule Insulin Mimetic with Anti-diabetic Activity in Mice. Science, 284, 974–976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cragg, G.M., Newman, D.J. (2002). Drugs from Nature: Present Developments and Future Prospects. In: Rauter, A.P., Palma, F.B., Justino, J., AraĂşjo, M.E., dos Santos, S.P. (eds) Natural Products in the New Millennium: Prospects and Industrial Application. Proceedings of the Phytochemical Society of Europe, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9876-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9876-7_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6186-7

  • Online ISBN: 978-94-015-9876-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics