Skip to main content

Changes in Content, Constituents and Distribution of Constitutive and Excreted Sugars of Spirulina (Arthrospira) Maxima in Nutrient-Limited Batch Cultures

  • Chapter
Algae and their Biotechnological Potential
  • 473 Accesses

Abstract

Changes in content, constituents and distribution of constitutive and excreted sugars of Spirulina (Arthrospira) maxima in nitrogen or sulfur-limited batch cultures were investigated in this study. The changes were influenced by both age of the culture and availability of nitrogen or sulfur in the medium. Increases in percentage of the constitutive sugars (PSC) took place at the beginning of the decelerating phase. The increase was mainly due to the accumulation of internal soluble polysaccharides (SIPS). The maximal concentration of PSC per unit volume of reactor was obtained at the beginning of the death phase, at which time cells from nitrogen-limited batch cultures contained about 66% of sugars. SIPS representing 76% of PSC consisted of mainly glucose. The monosaccharide of cell wall polysaccharides (CWPS) was also glucose. Sugars from the external layers (PSEL) or from culture medium (PSCM) contained a mixture of monosaccharides. Selective fractionation of PSCM, PSEL, SIPS and CWPS was obtained by a sequential extraction procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beardall, J., Griffiths, H. and Raven, J. A. (1982) Carbon isotope discrimination and the CO2 accumulating mechanism in Chlorella emersonii. J. Exp. Bot. 33, 729–737.

    Article  CAS  Google Scholar 

  • Beardall, J., Boberts, S. and Millhouse, J. (1991) Effects on nitrogen limitation on uptake of inorganic carbon and specific activity of ribulose-1,5-bisphophate carboxylase/oxgenase in green microalgae. Can. J. Bot. 69, 1146–1150.

    Article  CAS  Google Scholar 

  • Behrens, P.W., Sicotte, V.J. and Delente, J. (1994) Microalgae as a source of stable isotopically labeled compounds. J. Appl. Phycol. 6, 113–121.

    Article  CAS  Google Scholar 

  • Bertocchi, C., Navarini, L. and Cesàro, A. (1990) Polysaccharides from cyanobacteria. Carbohydrate Polymers 12, 127–153.

    Article  CAS  Google Scholar 

  • Black, G.E. and Fox, A. (1996) Recent progress in the analysis of sugar monomers from complex matrices using chromatography in conjunction with mass spectrometry or stand-alone tandem mass spectrometry. J. Chromatogr. A 720, 52–59.

    Google Scholar 

  • Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, R. E. and Clamp, J.R. (1971) An assessment of nnethanolysis and other factors used in the analysis of carbohydrate-containing materials. J. Biochem. 125, 1009–1018.

    CAS  Google Scholar 

  • Clamp, J.R., Bhatti, T. and Chambers, R.E. (1972) The determination of carbohydrate in biological materials by gas-liquid chromatography, in Methods of Biochemical Analysis, vol. 19, Academic Press, New York, pp. 229–344.

    Chapter  Google Scholar 

  • de Vasconcelos, L. and Fay, P. (1974) Nitrogent metabolism and ultrastructure in Anabaena cylindrica I. The effect of nitrogen starvation. Arch. Microbiol. 96, 271–279.

    Article  Google Scholar 

  • Filalimouhim, R., Cornet, J.F., Fontane, T., Fournet, B. and Dubert, G. (1993) Production, isolation and preliminary characterization of the exopolysaccharide of the cyanobacterium Spirulina platensis. Biotech. Lett. 15, 567–572.

    Article  CAS  Google Scholar 

  • Garbacki, N., Gloaguen, V., Damas, J., Hoffmann, L., Tits, M. and Angenot, L. (2000) Inhibition of croton oilinduced edema in mice ear skin by capsular polysaccharides from cyanobacteria Naunyn Schmiedeberg’s Arch. Pharmacol. 361, 460–464.

    Article  CAS  Google Scholar 

  • Ghoos, Y., Geypens, B., Maes, B., Hiele, M. and Rutgeerts, P. (1994) 13CO2-breath tests as diagnostic tools in gastroenterology, in S. Goldstein, P. Louvet and E. Soulié (eds), Less Isotopes Stables Applications Production, l’ Institut National des Sciences et Techniques Nucléaires, Centred’ Études de Saclay, pp. 23–30.

    Google Scholar 

  • Goodwin, T.W. (1974) Carotenoids and biliproteins, in W.D.P. Stewart (ed.) Algal Physiology and Biochemistry, Blackwell Scientific Publications, New York, pp. 176–200.

    Google Scholar 

  • Ha, Y.W., Dyck, L.A. and Thomas, R.L. (1988) Hydrocolloids from the freshwater microalgae, Palmella texensis and Cosmarium turpinii. J. Food Sci. 53, 841–845.

    Article  CAS  Google Scholar 

  • Herbert, D., Phipps, P.J. and Strange, R.E. (1971) Chemical analysis of microbial cells, in J. R. Norris and D. Ribbons (eds.), Methods in Microbiology, vol. Sb, Academic Press, New York, pp. 210–336.

    Google Scholar 

  • Kaplan, D., Richmond, A.E., Dubinsky, Z. and Aaronson, S. (1986) Algal nutrition, in A. Richmod (ed.), Handbook ofMicroalgal Mass Culture, CRC Press, New York, pp. 147–198.

    Google Scholar 

  • Levert, J.M. and Xia, J. L. (2001) Modeling the growth curve for Spirulina (Arthrospira) maxima, a versatile microalga for producing uniformly labelled compounds with stable isotopes. J. Appl. Phycol. (in press).

    Google Scholar 

  • Melta, V.B. and Vaidya, B.S. (1978) Cellular and extracellular polysaccharides of the blue-green alga Nostoc. J. Exp. Bot. 29, 1423–1430.

    Article  Google Scholar 

  • Meeks, J.C. (1974) Chlorophylls, in W.D.P. Stewart (ed.) Algal Physiology and Biochemistry, Blackwell Scientific Publications, New York, pp. 161–171.

    Google Scholar 

  • Merril, C. R. (1990) Gel staining techniques, in M.P. Deutscher (ed.), Methods in Enzymology, vol. 182, Academic Press, New York, pp. 477–488.

    Google Scholar 

  • Nicolaus, B., Panico, A. and Lama, L. (1999) Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochem. 52, 639–647.

    Article  CAS  Google Scholar 

  • O’Kelley, J.C. (1974) Inorganic nutrients, in W.D.P. Stewart (ed.) Algal Physiology and Biochemistry, Blackwell Scientific Publications, New York, pp. 610–635.

    Google Scholar 

  • Painter, T.J. (1983) Algal polysaccharides, in G.O. Aspinall (ed.), The Polysaccharides, vol. 2, Academic Press, New York, pp.195–285.

    Google Scholar 

  • Raven, J.A. (1974) Carbon dioxide fixition, in W.D.P. Stewart (ed.) Algal Physiology and Biochemistry, Blackwell Scientific Publications, New York, pp. 443–448.

    Google Scholar 

  • Rawn, J.D. (1983) Biochemistry, Happer & Row Publishers, New York.

    Google Scholar 

  • Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. and Stanier, R.Y. (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61.

    Google Scholar 

  • Tease, B.E. and Walker, R.W. (1987) Comparative composition of the sheath of the cyanobacterium Gloeothece ATCC 27152 cultured with and without combined nitrogen. J. Gen. Microbiol. 133, 3331–3339.

    CAS  Google Scholar 

  • van Eykelenburg, C. (1980) Ecophysiological studies on Spirulina platensis effect of temperature, light intensity and nitrate concentration on growth and ultrastructure. Antonie van Leeuwenhoek 46, 113–127.

    Article  PubMed  Google Scholar 

  • Vonshak, A., Abeliovich, A., Boussiba, S. and Richmond, A. (1982) Production of Spirulina biomass: Effects of environmental factors and population density. Biomass 2, 175.

    Article  Google Scholar 

  • Wu, J., Zhang, C.W. and Liu, Y.F. (1999) Isolation, purification and immunological activities of extracellular polysaccharide EP II from Spirulina maxima. Med. Biotech. 6, 99–102.

    CAS  Google Scholar 

  • Xia, J.L. (1999) Contribution To The Study of Photosynthesis of Sugars By Spirulina maxima, Ph.D. Thesis, Faculté Polytechnique de Mons, Mons, Belgium.

    Google Scholar 

  • Zarrouk, C. (1966) Contribution à l’ étude d’ une cyanobactérie: Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setchell et Gardner) Geitler. Thèse, Univ. Paris, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xia, J.L., Nie, Z.Y., Levert, J.M. (2001). Changes in Content, Constituents and Distribution of Constitutive and Excreted Sugars of Spirulina (Arthrospira) Maxima in Nutrient-Limited Batch Cultures. In: Chen, F., Jiang, Y. (eds) Algae and their Biotechnological Potential. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9835-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9835-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5886-7

  • Online ISBN: 978-94-015-9835-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics