Skip to main content

Two Dimensional Minimax Theory on Shear Stress and a General Classification Model for Nonlinear Constitutive Relations

  • Conference paper
IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 94))

  • 327 Accesses

Abstract

A theoretical framework that provides a general representation of two-dimensional nonlinear constitutive relations is proposed. The theory is based upon minimization of maximum shear stress that links functional forms of energy dissipation and constitutive relation. Its application to a polynomial energy dissipation function leads to a power-law relationship between strain rate and stress magnitudes. On the basis of this relationship, a general categorization model for constitutive relations is developed and used to analyze forms commonly encountered in ice studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alley, R. B., 1992. Flow-law hypotheses for ice-sheet modeling. J. Glaciol. 38: 245–256.

    ADS  Google Scholar 

  • Bagnold, R. A., 1954. Experiments on a gravity free dispersion of large solid sphere in a Newtonian fluid under shear. Proc. R. Soc. London, Ser. A 225: 49–63.

    Article  ADS  Google Scholar 

  • Glen, J. W., 1958. The flow law of ice. A discussion of the assumptions made in glacier theory, their experimental foundations and consequences. IASH 47: 171–183.

    Google Scholar 

  • Hibler, W. D. 1979. A dynamic thermodynamic model of sea ice. J. Phys. Oceanogr. 9: 815–846.

    Article  ADS  Google Scholar 

  • Jaeger, H. M. and S. R. Nagel, 1992. Physics of granular flow. Science 255: 1523–1531.

    Article  ADS  Google Scholar 

  • Landau, L. D. and E. M. Lifshitz, 1959. Fluid Mechanics. Trans. by J. B. Sykes and W. H. Reid, London, Pergamon Press; Reading, Mass., Addison-Wesley Pub. Co.

    Google Scholar 

  • Moritz, R. E. and J. Ukita, 2000. Geometry and the deformation of pack ice, Part I: A simple kinematic model. Ann. Glaciol. 31: 313–322.

    Article  ADS  Google Scholar 

  • Overland, J. E. and J. Ukita, 2000. Arctic sea ice dynamics workshop. EOS Trans. AGU 81: 309, 314.

    Article  ADS  Google Scholar 

  • Parmerter, R. R. and M. D. Coon, 1972. Model of pressure ridge formation in sea ice. J. Geophys. Res. 77: 6565–6575.

    Article  ADS  Google Scholar 

  • Paterson, W. S. B., 1981. The Physics of Glaciers. Oxford, Pergamon Press (2nd Ed.).

    Google Scholar 

  • Rothrock, D. A., 1975. The energetics of the plastic deformation of pack ice by ridging. J. Geophys. Res. 80: 4514–4519.

    Article  ADS  Google Scholar 

  • Shen, H. H., W. D. Hibler and M. Lepparanta, 1987. The role of floe collisions in sea ice rheology. J. Geophys. Res. 92: 7085–7096.

    Article  ADS  Google Scholar 

  • Stern, H. L., D. A. Rothrock and R. Kwok, 1995. Open water production in Arctic sea ice: satellite measurements and model parameterizations. J. Geophys. Res. 100: 20,601–20,612.

    Article  Google Scholar 

  • Thorndike, A. S., D. A. Rothrock, G. A. Maykut and R. Colony, 1975. The thickness distribution of sea ice. J. Geophys. Res. 80: 4501–4513.

    Article  ADS  Google Scholar 

  • Ukita, J. and R. E. Moritz, 1995. Yield curves and flow rules of pack ice. J. Geophys. Res. 95: 4545–4557.

    Article  ADS  Google Scholar 

  • Ukita, J. and R. E. Moritz, 2000. Geometry and the deformation of pack ice, Part II: Simulation with a random isotropic model and implication in sea ice rheology. Ann. Glaciol. 31: 323–326.

    Article  ADS  Google Scholar 

  • Ziegler, H and W. Wehrli, 1987. The derivation of constitutive relations from the free energy and the dissipation function. Adv. App. Mech. 25: 183–238.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ukita, J. (2001). Two Dimensional Minimax Theory on Shear Stress and a General Classification Model for Nonlinear Constitutive Relations. In: Dempsey, J.P., Shen, H.H. (eds) IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics. Solid Mechanics and Its Applications, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9735-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9735-7_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5890-4

  • Online ISBN: 978-94-015-9735-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics