Skip to main content

Abstract

Geographically, thermophilic fungi occupy world-wide distribution although existence of their gene pools is still uncertain (17, 18). Prevalence of strains that may pose health hazards and carry out beneficial activities in the humid tropics is only scanty because most distributional investigations are based on local substrates from limited resource pools. Considering the fact that a small group such as this has already yielded strains of biotechnological relevance, it is only appropriate that systematic search for their biodiversity and conservation of gene pool is initiated. Furthermore, these strains represent uppermost limit for the existence of eukaryotic life, and therefore, they are interesting tools for fundamental research to explain the basis of thermophilism in eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azevedo, M.O., Felipe, M.S.S., Astolfi-Filho, S., and Radford, A. (1990) Cloning, sequencing and homologies of Cbh-1 (exoglucanase) gene of Humicola grisea var. thermoidea, J. Gen. Microbiol. 136, 136–2576.

    Google Scholar 

  2. Bengtsson, L., Johansson, B., Hackett, T.J., Mc Hale, L., and Mc Hale, A.P. (1995) Studies on the biosorption of uranium by Talaromyces emersonii CBS 814.70 biomass, Appl. Microbiol. Biotechnol. 42(5), 807.

    Article  CAS  PubMed  Google Scholar 

  3. Bunni, L., Hackett, T.J., McHale, L., Flynn, G., and McHale, A.P. (1993) Molecular cloning and functional expression of Talaromyces emersonii derived a-amylase encoding genetic determinant in a human cell line, Biotechnol. Lett. 15, 15–1100.

    Article  Google Scholar 

  4. Cardello, L., Terenzi, H.F., and Jorge, J.A. (1994) A cytosolic trehalase from the thermophilic fungus Humicola grisea var. thermoidea, Microbiology 140, 140–1677.

    Article  Google Scholar 

  5. Colombie, F., Prome-Patouraux, D., Sancholle, M., Chavant, L., and Montant, C. (1985) Bioconversion of progesterone by a thermophilic fungus, Annual Conf. Network of Mycology, University Paul Sabatier, France, p.85 (abstract).

    Google Scholar 

  6. Derewenda, U., Swenson, L., Green R., Wei, Y., Morosoli, R., Shareck, F., Kluepfel, D., and Derewenda, Z.S. (1994) Crystal structure at 2.6-A° resolution of the Streptomyces lividans xylanase A, a member of the F family of a-l,4-D-glycanases, J.Biol. Chem. 269, 269–20814.

    Google Scholar 

  7. Dewey, F.M., MacDonald, M.M., and Phillips, S.I. (1989) Development of monoclonal antibody — ELISA, DOT BLOT and DISPTICK immunoassays for Humicola lanuginosa in rice, J. Gen. Microbiol. 135, 135–374.

    Google Scholar 

  8. Gadd, G.M. (1990) Bisorption, Biotechnology 2, 2–426.

    Google Scholar 

  9. Garg, S.K. and Johri, B.N. (1994) Rennet: Current trends and future research, Food Rev. Internat. 10, 10–355.

    Article  Google Scholar 

  10. Herbert, R.A. (1992) A perspective on the biotechnological potential of extremophiles, TIBTECH. 10, 10–402.

    Article  Google Scholar 

  11. Isobe, K., Aumann, K.D., and Schmid, R.D. (1994) A Structural model of mono- and diacylglycerol lipase from Penicillium camembertii, J. Biotechnol. 32, 32–33.

    Article  Google Scholar 

  12. Jain, S., Durand, H., and Tiraby, G. (1992) Development of a transformation system for the thermophilic fungus Talaromyces sp. CL240 based on the use of phleomysin resistance as a dominant selectable marker, Mol. Gen. Genet. 243, 243–493.

    Google Scholar 

  13. Jaitley, A.K., Johri, B.N., and Goel, R. (1993) Increased a- glucosidase activity of mutants of Sporotrichum (Chrysosporium) thermophile Apinis through protoplast fusion, Indian J. Microbiol 33, 33–178.

    Google Scholar 

  14. Jethro, J., Ganesh, R., Goel, R., and Johri, B.N. (1993) Improvement of xylanase in Melanocarpus albomyces IIS-68 through protoplast fusion and enzyme immobilization, J. Microb. Biotechnol. 8, 8–28.

    Google Scholar 

  15. Johri, B.N., Alurralde, J.L., and Klein, J. (1990) Production of lipase by Sporotrichum (Chrysosporium) thermophile Apinis immobilized in alginate and glass beads, in CEC-GBF International Workshop on “Lipases: Structure, Mechanism and Genetic Engineering”, Braunschweig, p.79 (abstract).

    Google Scholar 

  16. Johri, B.N., Alurralde, J.L., and Klein, J. (1990) Lipase production by free and immobilised protoplasts of Sporotrichum (Chrysosporium) thermophile Apinis, Appl. Microbiol Biotechnol 33, 33–371.

    Article  Google Scholar 

  17. Maheshwari, R., Kamlam, P.T., and Balasubramanyam, P.V. (1987) The biogeography of thermophilic fungi, Curr. Sci. 37, 37–279.

    Google Scholar 

  18. Maheshwari, R. (1997) The ecology of thermophilic fungi, in K.K. Janarananam, C. Rajendran, K. Natrajan and D.L. Hawksworth (eds.), Tropical Mycology, Oxford & IBH Publ., New Delhi, pp. 2787–289.

    Google Scholar 

  19. Ogundero, V.W. (1987) Partial purification and activities of an extracellular lipase of Thermomyces lanuginosus from Nigerian palm produce, Mycopathologia 97, 97–110.

    Article  Google Scholar 

  20. Rajasekaran, A.K. and Maheshwari, R. (1993) Thermophilc fungi: An assessment of their potential for growth in soil, J. Bio Sci. 18, 18–354.

    Google Scholar 

  21. Satyanarayana, T. and Chavant, L. (1987) Bioconversion and binding of sterols by thermophilic fungi, Folia Microbiol. 32, 32–359.

    Article  Google Scholar 

  22. Satyanarayana, T., Johri, B.N., and Klein, J. (1992) Biotechnological potential of thermophilic fungi, Hand Book of Applied Mycology Vol. 4, 4–761.

    Google Scholar 

  23. Sharma, V.K. and Goel, R. (1989) High cellulase-producing mutants of Sporotrichum thermophile, J. Gen. Appl Microbiol. 35, 35–166.

    Article  Google Scholar 

  24. Sharma, V.K., Goel, R., and Johri, B.N. (1988) Isolation, purification and regeneration of protoplasts from Sporotrichum thermophile conidiospores, Biochem. Internat. 17, 17–906.

    Google Scholar 

  25. Singhania, S., Satyanarayana, T., and Rajam, M.V. (1991) Polyamines of thermophilic moulds: Distribution and effect of polyamine biosynthesis inhibitors on growth, Mycol. Res. 95, 95–917.

    Article  Google Scholar 

  26. Simon, L., Lalonde, M., and Bruns, T.D. (1992) Specific amplification of 18S fungal ribosomal genes from vesicular arbuscular endomycorrhizal fungi colonising roots, Appl. Environ. Microbiol. 58, 58–295.

    Google Scholar 

  27. Singh, D., Goel, R., and Johri, B.N. (1988) Deacylation of penicillins by the immobilized mycelia of the thermophile, Malbranchea, J. Gen. Appl Microbiol. 34, 34–339.

    Article  Google Scholar 

  28. Stratsma, G. and Samson, R.A. (1993) Taxonomy of Scytalidium thermophilium, an important thermophilic fungus in mushroom compost, Mycol. Res. 97, 97–328.

    Article  Google Scholar 

  29. Straatsma, G., Gerrits, J.P.G., Augustin, M.P.A.M., Opden Camp, M.J.M., Vogels, G.D., and van Griendsten, L.J.L.D. (1989) Population dynamics of Scytalidium thermophilum in mushroom compost and stimulatory effects on growth rate and yield of Agaricus bisporus, J. Gen. Microbiol. 135, 135–759.

    Google Scholar 

  30. Straatsma, G., Gerrits, J.P.G., Gerrits, T.M., Opden Camp, M.J.M., and van Griendsven, L.J.L.D. (1991) Growth kinetics of Agaricus bisporus mycelium on solid substrate (mushroom compost), J. Gen. Microbiol. 137, 137–1477.

    Google Scholar 

  31. Straatsma, G., Olignsma, T.W., Gerritz, J.P.G., Amsing, J.G.M., op Den Camp, H.J.M., and Van Griensven, L.J.L.D. (1994) Inoculation of Sctalidium thermophilum in button mushroom compost and its effect on yield, Appl. Environ. Microbiol. 60, 60–3054.

    Google Scholar 

  32. Tansey, M.R. (1972) Effect of temperature on growth rate and development of the thermophilic fungus Chaetomium thermophile, Mycologia 64, 64–1299.

    Article  Google Scholar 

  33. Thermophiles: Science & Technology. An International Conference, Reykjavik. Iceland. Aug. 1992.

    Google Scholar 

  34. Thermophiles 93. An international conference on the Science and Technology of Thermophiles. Hamilton, New Zealand. Dec. 1993.

    Google Scholar 

  35. Thermophiles 96. An International Conference on The Biology, Ecology and Biotechnology of Thermophilic Microorganisms, Athens (USA), Sept. 1996.

    Google Scholar 

  36. Thermophiles ’98, An International conference on thermophiles, Brest (France), Sept. 1998.

    Google Scholar 

  37. Tosi, L.R.D., Terenzi, H.F., and Jorge, J.A. (1993) Purification and characterization of an extracellular glucoamylase from the thermophilic fungus Humicola grisea var. thermoidea, Can. J. Microbiol. 39, 39–852.

    Article  Google Scholar 

  38. Virk, S., Johri, B.N., and Singh, S.P. (1992) Protoplast from Malbranchea pulchelia var. suljurea. Isolation and regeneration, J. Gen. Appl. Microbiol. 38, 38–78.

    Article  Google Scholar 

  39. Wainwright, M. (1990) Novel uses for fungi in biotechnology, Biotechnology 2, 2–34.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johri, B.N., Satyanarayana, T., Olsen, J. (1999). Future Perspectives. In: Johri, B.N., Satyanarayana, T., Olsen, J. (eds) Thermophilic Moulds in Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9206-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9206-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5315-2

  • Online ISBN: 978-94-015-9206-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics