Skip to main content

On the Application of the Peano Representation of Linear Functionals in Numerical Analysis

  • Chapter
Recent Progress in Inequalities

Part of the book series: Mathematics and Its Applications ((MAIA,volume 430))

Abstract

For more than 80 years, Peano kernel theory has proven to be an important tool in numerical analysis. It is one aim of this paper to elucidate the wide range of possible applications of Peano’s representation of linear functionals. In the literature, Peano kernel theory is mostly considered for restricted classes of linear functionals. In this paper, it is also our objective to give an elementary but general approach for continuous linear functionals on C[a, b].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Akrivis and K.-J. Förster On the definiteness of quadrature formulae of Clenshaw-Curtis type, Computing 33 (1984), 363–366.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ch. T. H. Baker On the nature of certain quadrature formulas and their errors, SIAM J. Numer. Anal. 5 (1968), 783–804.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Brass, Zur Theorie der definiten Funktionale, Z. Angew. Math. Mech. 55 (1975), T230–T231.

    MathSciNet  MATH  Google Scholar 

  4. H. Brass, Quadraturverfahren, Vandenhoeck und Ruprecht, Göttingen, 1977.

    MATH  Google Scholar 

  5. H. Brass, Error estimation for the Clenshaw-Curtis quadrature method, Abhandlungen der Braunschweigischen Wissenschaftlischen Gesselschaft 43 (1992), 42–53.

    MathSciNet  Google Scholar 

  6. H. Brass, Bounds for Peano kernels, Numerical Integration IV (H. Brass and G. Hämmerlin, eds.), Birkhäuser Verlag, Basel, 1993, pp. 39–55.

    Google Scholar 

  7. H. Brass and K.-J. Förster On the estimation of linear functionals, Analysis 7 (1987), 237–258.

    MathSciNet  MATH  Google Scholar 

  8. H. Brass and R. Giinttner Eine Fehlerabschätzung zur Interpolation stetiger Funktionen, Studia Sci. Math. Hungar. 8 (1973), 363–367.

    MathSciNet  Google Scholar 

  9. H. Brass and G. Schmeisser Error estimates for interpolatory quadrature formulas, Numer. Math. 37 (1981), 371–386.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ph. J. Davis and Ph. Rabinowitz, Methods of Numerical Integration, Academic Press, Orlando, 1984.

    MATH  Google Scholar 

  11. R. A. DeVore and L. R. Scott Error bounds for Gaussian quadrature and weighted Lipolynomial approximation, SIAM J. Numer. Anal. 21 (1984), 400–412.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Durand, Nicholson-type integrals for products of Gegenbauer functions and related topics, Theory and Application of Special Functions (R. A. Askey, ed.), Academic Press, New York, 1975, pp. 353–374.

    Google Scholar 

  13. S. Ehrich and K.-J. Förster On exit criteria in quadrature using Peano kernel inclusions, Z. Angew. Math. Mech. 75 (1995), 625–628.

    Google Scholar 

  14. H. Fiedler Das asymptotische Verhalten der Peanokerne einiger interpolatorischer Quadraturverfahren, Numer. Math. 51 (1987), 571–581.

    Article  MathSciNet  MATH  Google Scholar 

  15. K.-J. Förster A survey of stopping rules in quadrature based on Peano kernel methods, Suppl. Rend. Circ. Mat. Palermo, Serie II 33 (1993), 311–330.

    Google Scholar 

  16. K.-J. Förster Inequalities for ultraspherical polynomials and applications to quadrature, J. Comp. Appl. Math. 49 (1993), 59–70.

    Article  MATH  Google Scholar 

  17. K.-J. Förster and K. Petras On a problèm proposed by H. Brass concerning the remainder term in quadrature for convex functions, Numer. Math. 57 (1990), 763–777.

    Article  MathSciNet  MATH  Google Scholar 

  18. K.-J. Förster and K. Petras Error estimates in Gaussian quadrature for functions of bounded variation, SIAM J. Numer. Anal. 28 (1991), 880–889.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Ghizetti and A. Ossicini, Quadrature Formulae, Birkhäuser Verlag, Basel, 1970.

    Google Scholar 

  20. H. H. Gonska and J. Meier On approximation by Bernstein-type operators: best constants, Studia Sci. Math. Hung 22 (1987), 287–297.

    MathSciNet  MATH  Google Scholar 

  21. P. Köhler, Estimates for linear remainder functionals by the modulus of continuity, Open Problems in Approximation Theory (B. Bojanov, ed.), Science Culture Technology Publishing, Singapore, 1994, pp. 109–124.

    Google Scholar 

  22. P. Köhler, Error estimates for polynomial and spline interpolation by the modulus of continuity, Approximation Theory (Proc. IDoMAT 95) (M. M. Müller, M. Feiten and D. H. Macke, eds.), Akademie Verlag, Berlin, 1995, pp. 141–150.

    Google Scholar 

  23. M. Levin and J. Girshovich, Optimal Quadrature formulas, Teubner, Leipzig, 1979.

    MATH  Google Scholar 

  24. A. A. Ligun Inequalities for upper bounds of functionals, Analysis Mathematica 2 (1976), 11–40.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston, New York, 1966.

    MATH  Google Scholar 

  26. K. Petras, Asymptotic behaviour of Peano kernels of fixed order, Numerical Integration III (H. Brass and G. Hämmerlin, eds.), Birkhäuser Verlag, Basel, 1988, pp. 186–198.

    Google Scholar 

  27. K. Petras, Normabschät-zung für die ersten Peanokerne der Gauβ-Formeln, Z. Angew. Math. Mech. 69 (1989), T81–T83.

    MathSciNet  MATH  Google Scholar 

  28. K. Petras, Error bounds of Gaussian and related quadrature and applications to r-convex functions, SIAM J. Numer. Anal. 29 (1992), 578–585.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Petras, One sided L 1-approximation and bounds for Peano kernels, Numerical Integration (T. O. Espelid and A. Genz, eds.), Kluwer Academic Publisher, Dordrecht, 1992, pp. 165–174.

    Chapter  Google Scholar 

  30. K. Petras, Gaussian quadrature formulae — second Peano kernels, nodes, weights and Bessel functions, Calcolo 30 (1993), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Petras, On the integration of functions having singularities, Z. Angew. Math. Mech. 75 (1995), 655–656.

    Google Scholar 

  32. R. Piessens, E. Doncker-Kapenga, C. W. Überhuber and D. K. Kahaner, QUADPACK — a Subroutine Package for Automatic Integration, Springer Series in Comp. Math. 1, Springer Verlag, Berlin, 1982.

    Google Scholar 

  33. A. Ponomarenko, Estimation of the error functional for quadrature formulas with Chebyshev weights, Metody Vychisl. 13 (1983), 116–121. (Russian)

    MathSciNet  MATH  Google Scholar 

  34. Ph. Rabinowitz On the definiteness of Gauss-Kronrod integration rules, Math. Comp. 46 (1986), 225–227.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Radon Restausdrücke bei Interpolations-und Quadratur formein durch bestimmte Integrale, Monatsh. Math. Phys. 42 (1935), 389–396.

    Article  MathSciNet  Google Scholar 

  36. F. Riesz and B. Sz.-Nagy, Vorlestungen über Funktionanalysis, Deutscher Verlag der Wissenschaften, Berlin, 1956.

    Google Scholar 

  37. A. Sard Integral representation of remainders, Duke Math. J. 15 (1948), 333–345.

    Article  MathSciNet  MATH  Google Scholar 

  38. D. D. Stancu Evaluation of the remainder term in approximation formulas by Bernstein polynomials, Math. Comp. 17 (1963), 270–278.

    MathSciNet  MATH  Google Scholar 

  39. A. H. Stroud and D. H. Secrest, Gaussian Quadrature Formulas, Prentice Hall, Englewood Cliffs, N.J., 1966.

    MATH  Google Scholar 

  40. G. Szegö, Orthogonal Polynomials, 4th edition, Amer. Math. Soc, Providence, R.I., 1975.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brass, H., Förster, KJ. (1998). On the Application of the Peano Representation of Linear Functionals in Numerical Analysis. In: Milovanović, G.V. (eds) Recent Progress in Inequalities. Mathematics and Its Applications, vol 430. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9086-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9086-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4945-2

  • Online ISBN: 978-94-015-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics