Skip to main content

Approximation in Line Space — Applications in Robot Kinematics and Surface Reconstruction

  • Chapter
Advances in Robot Kinematics: Analysis and Control

Abstract

Combining classical line geometry with techniques from numerical approximation, we develop algorithms for approximation in line space. In particular, linear complexes, linear congruences and reguli are fitted to given sets of lines or line segments. The results are applied to computationally robust detection of special robot configurations and to reconstruction of fundamental surface shapes from scattered points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bottema, O. and Roth, B., (1990), Theoretical Kinematics, Dover Publ., New York.

    MATH  Google Scholar 

  • Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M. and Stolfi, J., (1996), Lines in space: combinatorics and algorithms, Algorithmica 15, 428–447.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, H.Y. and Pottmann, H., (1997), Approximation by ruled surfaces, J. of Computational and Applied Math., submitted.

    Google Scholar 

  • Ge, Q.J. and Ravani, B., (1994), On representation and interpolation of line segments for computer aided geometric design, ASME Design Automation Conf., vol. 96-1, 191–198.

    Google Scholar 

  • Hlavaty, V., (1953), Differential Line Geometry, P. Nordhoff Ltd., Groningen.

    MATH  Google Scholar 

  • Hoschek, J., (1971), Liniengeometrie, Bibliograph. Institut, Zürich.

    MATH  Google Scholar 

  • Hoschek, J. and Lasser, D., (1993), Fundamentals of Computer Aided Geometric Design, A. K. Peters, WeUesley, MA.

    MATH  Google Scholar 

  • Hunt, K.H., (1978), Kinematic geometry of mechanisms, Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Hunt, K.H., (1986), Special configurations of robot-arms via screw theory, Robotica 4, 171–179.

    Article  Google Scholar 

  • Husty, M., Karger, A., Sachs, H. and Steinhilper, W., (1997), Kinematik und Robotik, Springer.

    Google Scholar 

  • Klein, F., (1921), Die allgemeine lineare Transformation der Linienkoordinaten, in: Gesammelte math. Abhandlungen I, Berlin, Springer.

    Chapter  Google Scholar 

  • Leonardis, A., Gupta, A. and Bajcsy, R. (1995), Segmentation of range images as the search for parametric geometric models, Intl. Journal of Computer Vision 14, 253–277s.

    Article  Google Scholar 

  • Lukács, G., Marshall, A.D. and Martin, R.R., (1997), Geometric least-squares fitting of spheres, cylinders, cones and tori, Preprint, University of Wales, Cardiff.

    Google Scholar 

  • Martin, R.R., Stroud, I.A., Marshall, A.D., (1997), Data reduction for reverse engineering, in: The Mathematics of Surfaces VII, eds. T.N.T. Goodman, Information Geometers.

    Google Scholar 

  • Merlet, J.-P., (1992), Singular Configurations of Parallel Manipulators and Grassmann Geometry, Int. Journal of Robotics Research, vol. 8, no. 5, 45–56.

    Article  Google Scholar 

  • Pottmann, H. and Randrup, T., (1997), Rotational and helical surface reconstruction for reverse engineering, Computing, submitted.

    Google Scholar 

  • Randrup, T., (1997), Approximation by cylinder surfaces, Computer Aided Design, submitted.

    Google Scholar 

  • Ravani, B. and Wang, J.W., (1991), Computer aided design of line constructs, ASME J. Mechanical Design 113, 363–371.

    Article  Google Scholar 

  • Sapidis, N.S. and Besl, P.J., (1995), Direct construction of polynomial surfaces from dense range images through region growing, ACM Trans. on Graphics 14, 171–200.

    Article  Google Scholar 

  • Varady, T., Martin, R. R. and Cox, J., (1997), Reverse engineering of geometric models — an introduction, Computer Aided Design 29, 255–268.

    Article  Google Scholar 

  • Wunderlich, W., (1964), Zyklische Strahlkomplexe und geodätische Linien auf euklidischen und nichteuklidischen Dreh-und Schraubflächen. Math. Zeitschr. 85, 407–418.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pottmann, H., Peternell, M., Ravani, B. (1998). Approximation in Line Space — Applications in Robot Kinematics and Surface Reconstruction. In: Lenarčič, J., Husty, M.L. (eds) Advances in Robot Kinematics: Analysis and Control. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9064-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9064-8_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5066-3

  • Online ISBN: 978-94-015-9064-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics