Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 397))

  • 596 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • T. Adachi and T. Sunada, Twisted Perron-Probenius theorem and L-functions, J. Fnal. Anal. 71 (1987) 1–46.

    MathSciNet  MATH  Google Scholar 

  • O. Agam, The magnetic response of chaotic mesoscopic systems, J. Phys. I Fr. 4 (1994) 697–730.

    Google Scholar 

  • L. Ahlfors, Some remarks on Teichmüller’s space of Riemann surfaces, Ann. Math. 74 (1961) 71.

    MathSciNet  Google Scholar 

  • Y. Alhassid and R. Levine, Spectral autocorrelation function in the statistical theory of energy levels, Phys. Rev. A46 (1992) 4650–4653.

    Google Scholar 

  • D. Alonso and P. Gaspard, Role of the edge orbits in the semiclassical quantization of the stadium billiard, J. Phys. A27 (1994) 1599–1607.

    MathSciNet  Google Scholar 

  • H. Alt, P. v. Brentano, H. Gräf, et al., Precision test of the Breit-Wigner formula on resonances in a superconducting microwave cavity, (preprint, 1995).

    Google Scholar 

  • H. Alt, H. Gräf, H. Harney, et al., GOE-statistics in a microwave stadium billiard with chaotic dynamics: Porter-Thomas distribution and algebraic decay ofr time correlations, Phys. Rev. Lett. 74 (1995) 62.

    Google Scholar 

  • H. Alt, H. Gräf, H. Harney, et al., Superconducting billiard cavities with chaotic dynamics — an experimental test of statistical measures, (preprint, 1995).

    Google Scholar 

  • H. Alt, H. Gräf, H. Harney, et al., Decay of the classical Bunimovich stadium, (preprint, 1995).

    Google Scholar 

  • H. Alt, H. Gräf, R. Hofferbert, et al., Studies of chaotic dynamics in a three-dimensional superconducting microwave billiard, (preprint, 1996).

    Google Scholar 

  • B. L. Al’tshuler, Pis’ma Zh. Eksp. Teor. Fiz. 41 (1985) 530;

    Google Scholar 

  • B. L. Al’tshuler, JETP Lett. 41 (1985) 648.

    Google Scholar 

  • B. L. Al’tshuler and D. E. Khmel’nitskii, JETP Lett. 42 (1986) 359.

    Google Scholar 

  • B. L. Al’tshuler and B. I. Shklovskii, Repulsion of energy levels and conductivity of small metal samples, Zh. Eksp. Teor. Fiz. 91 (1986) 220;

    Google Scholar 

  • B. L. Al’tshuler and B. I. Shklovskii, Sov. Phys. JETP 64 (1986) 127–135.

    Google Scholar 

  • M. Antoine, A. Comtet, and S. Ouvry, Scattering on a hyperbolic torus in a constant magnetic field, J. Phys. A23 (1990) 3699–3710.

    MathSciNet  Google Scholar 

  • N. Argaman, E. Doron, J. Keating, A. Kitaev, M. Sieber and U. Smilansky, Correlation in the actions of periodic orbits derived from quantum chaos, Phys. Rev. Lett. 71 (1993) 4326–4329.

    MathSciNet  MATH  Google Scholar 

  • N. Argaman, Y. Imry and U. Smilansky, Semiclassical analysis of spectral correlations in mesoscopic theory, Phys. Rev. B47 (1993) 4440–4457.

    Google Scholar 

  • E. Artin, Ein mechanisches system mit quasiergodischen bahnen, Abh. Math. Sem. Univ. Hamburg, 3 (1924) 170–175.

    MATH  Google Scholar 

  • A. O. L. Atkin and J. Lehner, Hecke operators on Γ0 (m), Math. Ann. 185 (1970) 134–160.

    MathSciNet  MATH  Google Scholar 

  • E. Aurell and C. Itzykson, Rational billiards and algebraic curves, JGP 5 (1988) 191–208.

    MathSciNet  MATH  Google Scholar 

  • R. Aurich, A. Bäcker and F. Steiner, Mode fluctuations as fingprint of chaotic and non-chaotic systems, (preprint, 1996).

    Google Scholar 

  • R. Aurich, E. Bogomolny, and F. Steiner, Periodic orbits in the regular hyperbolic octagon, Physica D48 (1991) 91–101.

    MathSciNet  Google Scholar 

  • R. Aurich, J. Bolte and F. Steiner, Universal signatures of quantum chaos, Phys. Rev. Lett. 73 (1994) 1356–1359.

    Google Scholar 

  • R. Aurich, J. Bolte, C. Matthies, M. Sieber, and F. Steiner, Crossing the entropy barrier of dynamical zeta functions, Physica D63 (1993) 71–86.

    MathSciNet  Google Scholar 

  • R. Aurich, T. Hesse, and F. Steiner, Role of nonperiodic orbits in semiclassical quantization of the truncated hyperbola billiard, Phys. Rev. Lett. 74 (1995) 4408–4411.

    Google Scholar 

  • R. Aurich and J. Marklof, Trace formulae for three-dimensional hyperbolic lattices and application to a strongly chaotic tetrahedral billiard, Physica D92 (1996) 101.

    MathSciNet  Google Scholar 

  • R. Aurich, F. Scheffler and F. Steiner, Subtleties of arithmetical quantum chaos, Phys. Rev. E51 (1995) 4173–4189.

    Google Scholar 

  • R. Aurich, M. Sieber and F. Steiner, Quantum chaos of the Hadamard-Gutzwiller model, Phys. Rev. Lett. 61 (1988) 483–487.

    MathSciNet  Google Scholar 

  • R. Aurich and F. Steiner, On the periodic orbits of a strongly chaotic system, Physica D32 (1988) 451–460.

    MathSciNet  Google Scholar 

  • R. Aurich and F. Steiner, Energy-level statistics of the Hadamard-Gutzwiller ensemble, Physica D43 (1990) 155–180.

    MathSciNet  Google Scholar 

  • R. Aurich and F. Steiner, Staircase functions, spectral rigidity, and a rule for quantizing chaos, Phys. Rev. A45 (1992) 583–592.

    MathSciNet  Google Scholar 

  • R. Aurich and F. Steiner, Statistical properties of highly excited quantum eigenstates of a strongly chaotic system, Physica D64 (1993) 185–214.

    MathSciNet  Google Scholar 

  • R. Aurich and F. Steiner, Periodic-orbit theory of the number variance Σ2(L) of strongly chaotic systems, Physica D82 (1995) 266–287.

    MathSciNet  Google Scholar 

  • R. Aurich and F. Steiner, Quantum eigenstates of a strongly chaotic system and the scar phenomenon, Chaos, Sol. Frac. 5 (1995) 229–255.

    MathSciNet  MATH  Google Scholar 

  • J. E. Avron, M. Klein, A. Pneuli, and L. Sadun, Hall conductance and adiabatic charge transport of leaky tori, Phys. Rev. Lett. 69 (1992) 128–131.

    Google Scholar 

  • J. E. Avron and A. Pneuli, Landau Hamiltonians on symmetric spaces, in Ideas and Methods in Quantum and Statistical Physics, ed. S. Albeverio et al., vol. 2 (Cambridge University Press, Cambridge, 1992) 96–117.

    Google Scholar 

  • A. Bäcker and H. Dullin, Symbolic dynamics and periodic orbits for the cardioid billiard, (preprint, 1995).

    Google Scholar 

  • A. Bäcker, F. Steiner and P. Stifter, Spectral statistics in the quantized cardioid billiard, Phys. Rev. E52 (1993) 2463–2472.

    Google Scholar 

  • V. Baladi, Dynamical zeta functions, (preprint, 1993).

    Google Scholar 

  • N. L. Balazs and A. Voros, Chaos on the pseudosphere, Phys. Rep. 143 (1986) 109–240.

    MathSciNet  Google Scholar 

  • R. Balian and C. Bloch, Solution of the Schrodinger equation in terms of classical paths, Ann. Phys. 85 (1974) 514.

    MathSciNet  MATH  Google Scholar 

  • R. Balian and C. Bloch, Distribution of eigenfrequencies for the wave function in a finite domain, III, Eigenfrequency density oscillations, Ann. Phys. 69 (1972) 76–160.

    MathSciNet  MATH  Google Scholar 

  • H. P. Baltes and E. R. Hilf, Spectra of Finite Systems (Bibliographisches Institut, Mannheim, 1976).

    MATH  Google Scholar 

  • B. L. Al’tshuler and B. I. Shklovskii, Weak-localization and integrability in ballistic cavities, (preprint, 1992).

    Google Scholar 

  • H. Baranger, R. Jalabert, and A. Stone, Quantum-chaotic scattering effects in semiconductor microstructures, Chaos 3 (1993) 665–682.

    Google Scholar 

  • H. U. Baranger and P. A. Mello, Mesoscopic transport through chaotic cavities: a random S-matrix theory approach, Phys. Rev. Lett. 73 (1994) 142–145.

    Google Scholar 

  • H. Baranger and P. Mello, How phase-breaking affects quantum transport through chaotic cavities, (preprint, 1994).

    Google Scholar 

  • H. Baranger and P. Mello, Reflection symmetric ballistic microstructures: quantum transport properties, (preprint, 1996).

    Google Scholar 

  • H. Baranger and A. Stone, Quenching of the Hall resistance in ballistic microstructures: a collimation effect, Phys. Rev. Lett. 63 (1989) 414–417.

    Google Scholar 

  • C. W. J. Beenakker, Universal limit of critical-current fluctuations in mesoscopic Josephson junctions, Phys Rev. Lett. 67 (1991) 3836–3839.

    Google Scholar 

  • C. W. J. Beenakker, Quantum transport in semiconductor-superconductor microjunctions, Phys. Rev. B46 (1992) 12841–12

    Google Scholar 

  • C. W. J. Beenakker, Universality in random-matrix theory of quantum transport, Phys. Rev. Lett. 70 (1993) 1155–1158.

    Google Scholar 

  • C. W. J. Beenakker, Random-matrix theory of mesoscopic fluctuations in conductors and superconductors, Phys. Rev. B47 (1993) 15763–15775.

    Google Scholar 

  • C. W. J. Beenakker, Universality of weak localization in disordered wires, Phys. Rev. B49 (1994) 2205–2207.

    Google Scholar 

  • C. W. J. Beenakker and M. Biittiker, Suppression of shot noise in metallic diffusive conductors, Phys. Rev. B46 (1992) 1889–1892.

    Google Scholar 

  • C. W. J. Beenakker and B. Rejaei, Nonlogarithmic repulsion of transmission eigenvalues in disordered wire, Phys. Rev. Lett. 71 (1993) 3689–3692.

    Google Scholar 

  • C. W. J. Beenakker and B. Rejaei, Random-matrix theory of parametric correlations in the spectra of disordered metals and chaotic billiards, Physica A203 (1994) 61–90.

    Google Scholar 

  • C. W. J. Beenakker and H. van Houten, Billiard model of a ballistic multiprobe conductor, Phys. Rev. Lett. 63 (1989) 1857–1860.

    Google Scholar 

  • G. Benettin and J. M. Stelcyn, Numerical experiments on the free motion of a point mass moving in a plane convex region, Phys. Rev A17 (1978) 773–785.

    Google Scholar 

  • P. Bérard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z. 155 (1977) 249–276.

    MathSciNet  MATH  Google Scholar 

  • P. Bérard, Varietes Riemanniennes isospectrales non isometriques, Asterisque 177–178 (1989) 127–154.

    Google Scholar 

  • P. Bérard, Transplantation et isospectralite, Math. Ann. 292 (1992) 547–559.

    MathSciNet  MATH  Google Scholar 

  • M. Berry, J. Katine, C. Marcus, R. Westervelt and A. Gossard, Weak localization and conductance fluctuations in a chaotic quantum dot, Surf. Sci. 305 (1994) 495–500.

    Google Scholar 

  • M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A10 (1977) 2083–2091; see also Phil. Trans. Roy. Soc. A287 (1977) 237–271.

    Google Scholar 

  • M. V. Berry, Regularity and chaos in classical mechanics, illustrated by three deformations of a circular billiard, Eur. J. Phys 2 (1981) 91–102.

    Google Scholar 

  • M. V. Berry, Quantizing a classically ergodic system: Sinai’s billiard and the KKR method, Ann. Phys. 131 (1981) 163–216.

    Google Scholar 

  • M. V. Berry, Chaotic behavior of deterministic systems. Les Houches Lectures XXXVI (ed. G. Iooss, R. Helleman and R. Stora, North-Holland, Amsterdam, 1983) 171–271.

    Google Scholar 

  • M. V. Berry, Semiclassical theory of spectral rigidity, Proc. Roy. Soc. London A400 (1985) 229–251.

    Google Scholar 

  • M. V. Berry, Riemann’s zeta function: a model for quantum chaos? in Quantum Chaos and Statistical Nuclear Physics, ed. T. H. Seligman and H. Nishioka (Lecture Notes in Physics, 263, Springer, Berlin, 1986), 1–17.

    Google Scholar 

  • M. V. Berry, Quantum chaology, Proc. Roy. Soc. A413 (1987) 183–198.

    Google Scholar 

  • M. V. Berry, Semiclassical formula for the number variance of the Riemann zeros, Nonlinearity 1 (1988) 399–407.

    MathSciNet  MATH  Google Scholar 

  • M. V. Berry, Quantum scars of classical closed orbits in phase space, Proc. Roy. Soc. London A423 (1989) 219–231.

    Google Scholar 

  • M. V. Berry, Some quantum-to-classical asymptotics, in Chaos and Quantum Physics: Les Houches Lecture Series 52 (ed. M.-J. Giannoni, A. Voros, and J. Zinn-Justin, North-Holland, Amsterdam, 1991).

    Google Scholar 

  • M. V. Berry and J. Keating, Persistent current flux correlations calculated by quantum chaology, J. Phys. A 27 (1994) 6167–6176.

    MathSciNet  MATH  Google Scholar 

  • M. V. Berry and R. Mondragon, Proc. Roy. Soc. A412 (1987) 53–74.

    MathSciNet  Google Scholar 

  • M. V. Berry and M. Robnik, Statistics of energy levels without time-reversal symmetry: Aharonov-Bohm chaotic billiards, J. Phys. A19 (1986) 649–668.

    MathSciNet  Google Scholar 

  • M. V. Berry and M. Tabor, Closed orbits and the regular bound spectrum, Proc. Roy. Soc. Lond. A349 (1976) 101–123.

    MathSciNet  Google Scholar 

  • M. V. Berry and M. Tabor, Level clustering in the regular spectrum, Proc. Roy. Soc. London A356 (1977) 375–394.

    Google Scholar 

  • M. V. Berry and M. Tabor, Calculating the bound spectrum by path summation in action-angle variables, J. Phys. A 10 (1977) 371–379.

    Google Scholar 

  • M. V. Berry and M. Wilkinson, Diabolical points in the spectra of triangles, Proc. Roy. Soc. London A392 (1984) 15–43.

    MathSciNet  Google Scholar 

  • S. de Bierve and A. Bouzouina, Equipartition of the eigenfunctions of quantized ergodic maps on the torus, (preprint, 1995).

    Google Scholar 

  • D. Biswas and S. Jain, Quantum description of a pseudointegrable system: the 7r/3-rhombus billiard, Phys. Rev. A42 (1990) 3170–3185.

    Google Scholar 

  • D. Biswas and S. Sinha, Theory of fluctuations in pseudointegrable systems, Phys. Rev. Lett. 70 (1993) 916–919.

    Google Scholar 

  • P. Bleher, The energy level spacing for two harmonic oscillators with generic ratio of frequencies, J. Stat. Phys. 63 (1991) 261–283.

    MathSciNet  Google Scholar 

  • P. Bleher, Quasiclassical expansion and the problem of quantum chaos, LNM 1469 (1991) 60–89.

    MathSciNet  Google Scholar 

  • P. Bleher, On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. J. 67 (1992) 461–481.

    MathSciNet  MATH  Google Scholar 

  • P. Bleher, Distribution of the error term in the Weyl asymptotics for the Laplace operator on a two-dimensional torus and related lattice problems, Duke Math. J. 70 (1993) 655–682.

    MathSciNet  MATH  Google Scholar 

  • P. Bleher, Trace formula for quantumn integrable systems, lattice-point problem and small divisors, (preprint, 1996).

    Google Scholar 

  • P. Bleher, Z. Cheng, F. Dyson, J. Lebowitz, Distribution of the error term for the number of lattice points inside a shifted circle, Comm. Math. Phys. 154 (1993) 433–469.

    MathSciNet  MATH  Google Scholar 

  • P. Bleher, F. Dyson and J. Lebowitz, Non-Gaussian energy level statistics for some integrable systems, Phys. Rev. Lett. 71 (1993) 3047–3050.

    MathSciNet  MATH  Google Scholar 

  • P. Bleher, D. Kosygin and Ya. Sinai, Distribution of enery levels of quantum free particle on the Liouville surface and trace formulae, Comm. Math. Phys. 170 (1995) 375–403.

    MathSciNet  MATH  Google Scholar 

  • P. Bleher and J. Lebowitz, Energy-level statistics of model quantum systems: universality and scaling in a lattice-point problem, J. Stat. Phys. 74 (1994) 167–217.

    MathSciNet  MATH  Google Scholar 

  • P. Bleher and J. Lebowitz, Variance of number of lattice points in random narrow elliptic strip, Ann. Inst. H. Poincare 31 (1995) 27–58.

    MathSciNet  MATH  Google Scholar 

  • S. Bochner, On Riemann’s functional equation with multiple gamma factors, Ann. Math. 67 (1958) 29–41.

    MathSciNet  MATH  Google Scholar 

  • E. B. Bogomolny, B. Georgeot, M.-J. Giannoni and C. Schmit, Chaotic billiards generated by arithmetic groups, Phys. Rev. Lett. 69 (1992) 1477–1480.

    MathSciNet  MATH  Google Scholar 

  • E. B. Bogomolny, B. Georgeot, M.-J. Giannoni and C. Schmit, Arithmetical chaos, (preprint, 1993).

    Google Scholar 

  • E. B. Bogomolny, B. Georgeot, M.-J. Giannoni and C. Schmit, Quantum chaos on constant negative curvature surface, Chaos, Solitons & Fractals 5 (1995) 1311–1323.

    MathSciNet  MATH  Google Scholar 

  • E. B. Bogomolny, B. Georgeot, M.-J. Giannoni and C. Schmit, Trace formulas for arithmetical systems, Phys. Rev. E47 (1993) R2217.

    MathSciNet  Google Scholar 

  • E. Bogomolny and J. Keating, Random matrix theory and the Riemann zeros I: three and four-point correlations, Nonlin. 8 (1995) 1115–1131.

    MathSciNet  MATH  Google Scholar 

  • E. Bogomolny and P. Leboeuf, Statistical properties of the zeros of zeta functions — beyond the Riemann case, Nonlin. 7 (1994) 1155–1167.

    MathSciNet  MATH  Google Scholar 

  • E. Bogomolny, F. Leyvraz, and C. Schmit, Distribution of eigenvalues for the modular group, Comm. Math. Phys. 176 (1996) 577–617.

    MathSciNet  MATH  Google Scholar 

  • O. Bohigas, Random matrix theories and chaotic dynamics, in Chaos and Quantum Physics, M. J. Giannoni et al., eds. (Elsevier, Amsterdam, 1991) 89–199.

    Google Scholar 

  • O. Bohigas, M.-J. Giannoni and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984) 1–4;

    MathSciNet  MATH  Google Scholar 

  • O. Bohigas, M.-J. Giannoni and C. Schmit, Spectral properties of the Laplacian and random matrix theory, J. Physique Lett. 45 (1984) L1015.

    Google Scholar 

  • O. Bohigas, M.-J. Giannoni and C. Schmit, Spectral fluctuations, random matrix theory and chaotic motion, Lecture Notes in Physics 262 (1986).

    Google Scholar 

  • C. Boldrighini, M. Keane and F. Marchetti, Billiards in polygons, Ann. Prob. 6 (1978) 532–540.

    MathSciNet  MATH  Google Scholar 

  • J. Bolte, Some studies on arithmetical chaos in classical and quantum mechanics, Inter. J. Mod. Phys. B7 (1993) 4451–4553.

    MathSciNet  Google Scholar 

  • J. Bolte, Periodic orbits in arithmetical chaos on hyperbolic surfaces, Nonlin. 6 (1993) 935–951.

    MathSciNet  MATH  Google Scholar 

  • J. Bolte, G. Steil and F. Steiner, Arithmetical chaos and violation of universality in energy level statistics, Phys. Rev. Lett. 69 (1992) 2188–2191.

    MathSciNet  MATH  Google Scholar 

  • E. Bombieri and D. Hejhal, Sur les zeros des fonctions zeta d’Epstein, CRAS 304 (1987) 213–217.

    MathSciNet  MATH  Google Scholar 

  • E. Bombieri and D. Hejhal, On the distribution of zeros of linear combination of Euler products, Duke Math. J. 80 (1995) 821–862.

    MathSciNet  MATH  Google Scholar 

  • M. Boshernitzan, G. Galperin, T. Kruger and S. Troubetzkoy, Periodic billiard orbits are dense in rational polygons, (preprint, 1996).

    Google Scholar 

  • A. Bouzouina and S. De Bievre, Equipartition of the eigenvunctions of quantized ergodic maps on the torus, (preprint, 1996).

    Google Scholar 

  • R. Bowen, The equidistribution theory of closed geodesics, Amer. J. Math. 94 (1972) 413–423.

    MathSciNet  MATH  Google Scholar 

  • O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I (Springer-Verlag, New York, 1979).

    Google Scholar 

  • R. Brooks, On manifolds of negative curvature with isospectral potentials, Top. 26 (1987) 63–66.

    MathSciNet  MATH  Google Scholar 

  • R. Brooks, P. Perry and P. Yang, Isospectral sets of conformally equivalent metrics, Duke Math. J. 58 (1989) 131–150.

    MathSciNet  MATH  Google Scholar 

  • P. W. Brouwer and C. W. J. Beenakker, Conductance distribution of a quantum dot with non-ideal single-channel leads, preprint, 1993.

    Google Scholar 

  • R. Brummelhuis, T. Paul and A. Uribe, Spectral estimates around a critical level, Duke Math. J. 78 (1995) 477–530.

    MathSciNet  MATH  Google Scholar 

  • L. Bunimovich, On the ergodic properties of some billiards, Fun. Anal. Appl. 8 (1974) 73–74.

    Google Scholar 

  • L. Bunimovich, On the ergodic properties of nowhere dispersing billiards, Comm. Math. Phys. 65 (1979) 295–312.

    MathSciNet  MATH  Google Scholar 

  • P. Buser, Riemannsche flachen mit eigenwerten in (0,1/4), Comm. Math. Helv. 52 (1977) 25–34.

    MathSciNet  MATH  Google Scholar 

  • P. Buser, Geometry and Spectra of Compact Riemannian Surfaces (Birkhauser, Boston, 1992).

    Google Scholar 

  • P. Buser, J. Conway, P. Doyle and K. Semmler, Some planar isospectral domains, Int. Math. Res. Not.

    Google Scholar 

  • M. Biittiker, Scattering theory of thermal and excess noise in open conductors, Phys. Rev. Lett. 65 (1990) 2901–2904.

    Google Scholar 

  • H. Bruus and N. Whelan, Periodic orbit theory of edge diffraction, (preprint, 1995).

    Google Scholar 

  • G. Casati, B. Chirikov and I. Guarneri, Energy-level statistics of integrable quantum systems, Phys. Rev. Lett. 54 (1985) 1350–1353.

    MathSciNet  Google Scholar 

  • G. Casati, I. Guarneri and F. Valz-Gris, Degree of randomness of the sequence of eigenvalues, Phys. Rev. A30 (1984) 1586–1588.

    Google Scholar 

  • J. T. Chalker and A. M. S. Macêdo, Complete characterization of universal fluctuations in quasi-one-dimensional mesoscopic conductivity, Phys. Rev. Lett. 71 (1993) 3693.

    Google Scholar 

  • K. Chandrasekharan and R. Narasimhan, Zeta-functions of ideal classes in quadratic fields and zeros on the critical line, Comm. Math. Helv. 43 (1968) 18–30.

    MathSciNet  MATH  Google Scholar 

  • A. Chang, H. Baranger, L. Pfeiffer and K. West, Weak-localization in chaotic versus non-chaotic cavities: a striking difference in the line shape, Phys. Rev. Lett. 73 (1994) 2111.

    Google Scholar 

  • Z. Cheng and J. Lebowitz, Statistics of energy levels in integrable quantum systems, Phys. Rev. A44 (1991) R3399-R3402.

    MathSciNet  Google Scholar 

  • Z. Cheng, J. Lebowitz and P. Major, On the number of lattice points between two enlarged and randomly shifted copies of an oval, Prob. Thy. Rel. Fields 100 (1994) 253–268.

    MathSciNet  MATH  Google Scholar 

  • T. Cheon and T. Cohen, quantum level statistics of pseudointegrable billiards, Phys. Rev. Lett. 62 (1989) 2769–2772.

    Google Scholar 

  • N. Chernoff, Ergodic and statistical properties of peicewise linear hyperbolic automorphism of the two-torus, J. Stat. Phys. 69 (1992) 111–134.

    Google Scholar 

  • N. Chernov and C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli, (preprint, 1994).

    Google Scholar 

  • B. A. Cipra, On the Niwa-Shintani theta-kernel lifting of modular forms, Nagoya Math. J. 91 (1983) 49–117.

    MathSciNet  MATH  Google Scholar 

  • H. Cohen and J. Oesterle, Dimensions des espaces de formes modulaires, International Summer School on Modular Functions (1976), LNM 627, 69–78.

    Google Scholar 

  • Y. Colin de Verdière, Spectre du Laplacien et longeurs des geodesiques periodiques I, II, Compos. Math. 27 (1973) 83–106, 159–184.

    MATH  Google Scholar 

  • Y. Colin de Verdière, Nombre de points entiers dans une famille homo-thetique de domaines de Rn, Ann. Sci. Ec. Norm. Sup. 10 (1977) 559–576.

    MATH  Google Scholar 

  • Y. Colin de Verdiere, Spectra conjoint d’operateurs pseudo-differentiels qui communtent II. Le cas integrable, Math. Z. 171 (1980) 51–73.

    MathSciNet  MATH  Google Scholar 

  • Y. Colin de Verdière, Une formule de trace pour l’operateur de Schrödinger dans R3, Annales de l’ENS 14 (1981).

    Google Scholar 

  • Y. Colin de Verdière, Pseudo Laplacians, Ann. Inst. Fourier 32 (1982) 275–286.

    Google Scholar 

  • Y. Colin de Verdière, Pseudo-Laplaciens, II, Ann. Inst. Fourier 33 (1983) 87–113.

    MATH  Google Scholar 

  • Y. Colin de Verdière, Sur les longueurs des trajectories periodiques d’un billiard, in Geometrie Symplectique et de Contact (Hermann, Paris, 1984) 122–139.

    Google Scholar 

  • Y. Colin de Verdière, Ergodicité et fonctions propres du Laplacien, Comm. Math. Phys. 102 (1985) 497–502.

    MathSciNet  MATH  Google Scholar 

  • Y. Colin de Verdière, Theorie spectrale des surfaces de Riemann d’aire infinie, Asterisque 132 (1985) 259–275.

    Google Scholar 

  • Y. Colin de Verdière and B. Parisse, Equilibre instable en regime semi-classique, Comm. Part. Diff. Eqs. 19 (1994) 1535–1563.

    Google Scholar 

  • Y. Colin de Verdière and B. Parisse, Equilibre instable en regime semi-classique II. Conditions de Bohr-Sommerfeld, Ann. Inst. H. Poincare 61 (1994) 347–367.

    MATH  Google Scholar 

  • P. Collet, H. Epstein, and G. Gallavotti, Perturbations of geodesic flows on surfaces of constant negative curvature and their mixing properties, Comm. Math. Phys. 95 (1984) 61–112.

    MathSciNet  MATH  Google Scholar 

  • M. Combescure and D. Robert, Distribution of matrix elements and level spacings for classically chaotic systems, Ann. Inst. H. Poincare 61 (1994) 443–483.

    MathSciNet  MATH  Google Scholar 

  • A. Comtet, On the Landau levels on the hyperbolic plane, Ann. Phys. 173 (1987) 185–209.

    MathSciNet  Google Scholar 

  • A. Comtet and P. J. Houston, Effective action of the hyperbolic plane in a constant magnetic field, J. Math. Phys. 26 (1985) 185–191.

    MathSciNet  Google Scholar 

  • A. Comtet, B. Georgeot and S. Ouvry, Trace formula for Riemann surfaces with magnetic field, Phys. Rev. Lett. 71 (1993) 3786–3789.

    Google Scholar 

  • A. Connes and M. A. Rieffel, Operator algebras in mathematical physics, Contemp. Math. 62 (1987).

    Google Scholar 

  • J. Conrey and A. Ghosh, On the Selberg class of Dirichlet series, Duke Math. J. 72 (1993) 673–693.

    MathSciNet  MATH  Google Scholar 

  • J. H. Conway and N. J. A. Sloane, Sphere-packings, Lattices and Groups (Springer-Verlag, New York, 1988).

    MATH  Google Scholar 

  • J. H. Conway and N. J. A. Sloane, Four-dimensional lattices with the same theta series, Duke Math. J. IMRN (1992) 93–96.

    Google Scholar 

  • O. Costin and J. Lebowitz, Gaussian fluctuation in random matrices, Phys. Rev. Lett. 75 (1995) 69–72.

    Google Scholar 

  • P. Cvitanovic et al., Classical and Quantum Chaos: A Cyclist Treatise, (preprint, 1996).

    Google Scholar 

  • P. Cvitanovic and B. Eckhardt, Periodic orbit quantization of chaotic systems, Phys. Rev. Lett. 63 (1989) 823–826.

    MathSciNet  Google Scholar 

  • P. Cvitanovic, G. Vattay and A. Wirzba, Quantum fluids and classical determinants, (preprint, 1996).

    Google Scholar 

  • E. Dahlberg and E. Trubowitz, A remark on two-dimensional periodic potentials, Comm. Math. Helv. 57 (1982) 130–134.

    MathSciNet  MATH  Google Scholar 

  • P. Dahlqvist, Approximate zeta functions for the Sinai billiard and related systems, Nonlin. 8 (1995) 11.

    MathSciNet  MATH  Google Scholar 

  • P. Dahlqvist, The Lyapunov exponent in the Sinai billiard in the small scatterer limit, (preprint, 1996).

    Google Scholar 

  • I. Daubechies, Coherent states and projective representations of the linear canonical transformations, J. Math. Phys. 21 (1980) 1377–1389.

    MathSciNet  MATH  Google Scholar 

  • H. Davenport, Multiplicative Number Theory (Springer-Verlag, New York, 1980).

    MATH  Google Scholar 

  • E. B. Davies, Heat Kernels and Spectral Theory (Cambridge University Press, Cambridge, 1989).

    MATH  Google Scholar 

  • E. Davies, B. Simon and M. Taylor, L P spectral theory of Kleinian groups, J. Func. Anal. 78 (1988) 116–136.

    MathSciNet  MATH  Google Scholar 

  • S. De Bievre and M. Degli Esposti, Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and baker maps, (preprint, 1996).

    Google Scholar 

  • S. De Bievre, M. Degli Esposti and R. Giachetti, Quantization of a class of peicewise affine transformations on the torus, Comm. Math. Phys. 176 (1995) 73–94.

    Google Scholar 

  • M. Degli Esposti, Quantization of the orientation preserving automorphisms of the torus, Ann. Inst. H. Poincare 58 (1993) 323–341.

    MathSciNet  MATH  Google Scholar 

  • M. Degli Esposti, Classical and quantum equidistribution: an (easy) example, (thesis, Pennsylvania State University, 1994).

    Google Scholar 

  • M. Degli Esposti, S. Gräffi and S. Isola, Classical limit of the quantized hyperbolic toral automorphism, Comm. Math. Phys. 167 (1995) 471–507.

    MathSciNet  MATH  Google Scholar 

  • M. Degli Esposti, S. Gräffi and S. Isola, Equidistribution of periodic orbits: an overview of classical vs quantum results, Lect. Notes Math. 1589 (1994) 65–91.

    Google Scholar 

  • M. Degli Esposti and S. Isola, Distribution of closed orbits for linear automorphisms of tori, Nonlin. 8 (1995) 827–842.

    MathSciNet  MATH  Google Scholar 

  • M. J. M. de Jong and C. W. J. Beenakker, Mesoscopic fluctuations in the shot-noise power of metals, Phys. Rev. B46 (1992) 13400–13406.

    Google Scholar 

  • J. M. Deshouillers and H. Iwaniec, The non-vanishing of the Rankin-Selberg zeta-functions at special points, Contemp. Math. 53 (1986) 51–95.

    MathSciNet  Google Scholar 

  • J. M. Deshouillers, H. Iwaniec, R. Phillips, and P. Sarnak, Maass cusp forms, Proc. NAS 82 (1985) 3533–3534.

    MathSciNet  MATH  Google Scholar 

  • P. Deligne, La conjecture de Weil I, Publ. Math. IHES 48 (1974) 273–308.

    MathSciNet  Google Scholar 

  • P. Deligne, Cohomologie Etale, Lec. Notes Math. 569 (1977).

    Google Scholar 

  • D. DeTurck, Audible and inaudible geometric properties, Rend. Sem. Fac. Sci. Cagliari 58 (1988) 1–26.

    MathSciNet  Google Scholar 

  • D. DeTurck and C. S. Gordon, Isospectral deformations I: Riemannian structures on two step nilspaces, Comm. Pure Appl. Math. 40 (1987) 367–387.

    MathSciNet  MATH  Google Scholar 

  • D. DeTurck and C. Gordon, Isospectral deformations II: trace formulas, metrics and potentials, Comm. Pure Appl. Math. 42 (1989) 1067–1095.

    MathSciNet  MATH  Google Scholar 

  • D. DeTurck, H. Gluck, C. Gordon, and D. Webb, You cannot hear the mass of a homology class, Comm. Math. Helv. 64 (1992) 589–617.

    MathSciNet  Google Scholar 

  • P. A. M. Dirac, Proc. Roy. Soc. London, A133 (1931) 60.

    Google Scholar 

  • H. Donnelly, On the point spectrum for finite volume symmetric spaces of negative curvature, Comm. PDE 6 (1981) 963–982.

    MathSciNet  MATH  Google Scholar 

  • H. Donnelly, On the cuspidal spectrum for finite volume symmetric spaces, J. Diff. Geom. 17 (1982) 239–253.

    MathSciNet  MATH  Google Scholar 

  • O. N. Dorokhov, Pis’ma Zh. Eksp. Teor. Fiz. 36 (1982) 259

    Google Scholar 

  • O. N. Dorokhov, JETP Lett 36 (1982) 318.

    Google Scholar 

  • E. Doron, U. Smilansky and A. Prenkel, Experimental demonstration of chaotic scattering of microwaves, Phys. Rev. Lett. 65 (1990) 3072–3075.

    Google Scholar 

  • T. Driscoll, Eigenmodes of isospectral drums, (preprint, 1995).

    Google Scholar 

  • P. Duclos and H. Hogreve, On the semiclassical localization of the quantum probability, J. Math. Phys. 34 (1993) 1681–1691.

    MathSciNet  MATH  Google Scholar 

  • J. Duistermaat and V. Guillemin, Spectrum of elliptic operators and periodic bicharacteristics, Inv. math. 29 (1975) 39–79.

    MathSciNet  MATH  Google Scholar 

  • W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent, math. 92 (1988) 73–90.

    MathSciNet  MATH  Google Scholar 

  • H. Dullin, P. Richter, and A. Wittek, A two-parameter study of the extent of chaos in a billiard system, (preprint, 1995).

    Google Scholar 

  • G. V. Dunne, Hilbert space for charged particles in perpendicular magnetic fields, Ann. Phys. 215 (1992) 233–263.

    MathSciNet  MATH  Google Scholar 

  • G. V. Dunne, Slater decomposition of Laughlin states, Int. J. Mod. Phys. B7 (1993) 4783–4813.

    MathSciNet  Google Scholar 

  • F. J. Dyson, Statistical theory of the energy levels of complex systems, I, II, III, J. Math. Phys. 3 (1962) 140–175.

    MathSciNet  MATH  Google Scholar 

  • F. J. Dyson, A class of matrix ensembles J. Math. Phys. 13 (1972) 90–97.

    MathSciNet  MATH  Google Scholar 

  • F. J. Dyson and M. L. Mehta, Statistical theory of the energy levels of complex systems, IV, V, J. Math. Phys. 4 (1963) 701–719.

    MathSciNet  MATH  Google Scholar 

  • B. Eckhardt, Correlations in quantum time delay, Chaos 3 (1993) 613–617.

    MathSciNet  Google Scholar 

  • B. Eckhardt, Order and chaos in quantum irregular scattering: Wigner’s time delay, Vistas in Astronomy 37 (1993) 43–55.

    Google Scholar 

  • B. Eckhardt, S. Fishman, K. Müller and D. Wintgen, Phys. Rev. A45 (1992) 3531.

    Google Scholar 

  • B. Eckhardt, S. Fishman, J. Keating, O. Agam, J. Main, and K. Müller, Approach to ergodicity in quantum wave functions, Phys. Rev. E52 (1995) 5893.

    Google Scholar 

  • B. Eckhardt and S. Grossmann, Phys. Rev. E50 (1994) 4571.

    Google Scholar 

  • B. Eckhardt and J. Main, Semiclassical form-factor of matrix element fluctuations, Phys. Rev. Lett. 75 (1995) 2300–2303.

    Google Scholar 

  • B. Eckhardt and G. Russberg, Resummation of classical and semiclassical periodic orbit formulas, Phys. Rev. E47 (1993) 1578–1588.

    Google Scholar 

  • K. B. Efetov, Supersymmetry and the theory of disordered metals, Adv. Phys. 32 (1983) 53–127.

    MathSciNet  Google Scholar 

  • J. Elstrodt, Die resolvente zum eigenwertproblem der automorphen formen in der hyperbolischen ebene, Math. Ann. 203 (1973) 295–330

    MathSciNet  MATH  Google Scholar 

  • J. Elstrodt, Math. Zeit. 132 (1973) 99–134

    MathSciNet  MATH  Google Scholar 

  • J. Elstrodt, Math. Ann. 208 (1974) 99–132.

    MathSciNet  MATH  Google Scholar 

  • J. Elstrodt, F. Grunewald and J. Mennike, Discontinuous groups on three-dimensional hyperbolic space: analytical theory and arithmetic applications, Russ. Math. Sur. 38:1 (1983) 137–168.

    MathSciNet  MATH  Google Scholar 

  • J. Elstrodt, F. Grunewald and G. Mennicke, Elem. Anal. Theory of Numbers 17 (1985) 83.

    MathSciNet  Google Scholar 

  • M. Eisele and D. Mayer, Dynamical zeta functions for Artin’s billiard and the Venkov-Zograf factorization formula, (preprint, 1995).

    Google Scholar 

  • C. Epstein, J. L. Hafner and P. Sarnak, Zeros of L-functions attached to Maass forms, Math. Z. 190 (1985) 113–128.

    MathSciNet  MATH  Google Scholar 

  • A. Feingold and A. Peres, Distribution of matrix elements of chaotic systems, Phys. Rev. A34 (1986) 591–595.

    MathSciNet  Google Scholar 

  • M. Fierz, Hel. Phys. Acta 17 (1944) 27.

    MathSciNet  MATH  Google Scholar 

  • K. Frahm, P. Brouwer, J. Meisen and C. Beenakker, Effect of the coupling to a superconductor on the level statistics of a metal grain in a magnetic field, (preprint, 1996).

    Google Scholar 

  • A. Fujii, On the distribution of the zeros of the Riemann zeta function, Bull. AMS 81 (1975) 139–142.

    MATH  Google Scholar 

  • A. Fujii, On the uniformity of the distribution of zeros of the Riemann zeta function, J. Reine Angew. Math. 302 (1978) 167–205.

    MathSciNet  MATH  Google Scholar 

  • P. Gallagher, Pair correlation of zeros of the zeta function, J. Math. 362 (19880 72–86.

    MathSciNet  Google Scholar 

  • P. Gallagher and J. Mueller, Primes and zeros in short intervals, J. reine Ang. Math. 303 (1978) 205–220.

    MathSciNet  Google Scholar 

  • G. Galperin, T. Krueger and S. Troubetzkoy, Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys. 169 (1995) 463–473.

    Google Scholar 

  • G. Galperin, N. Chernov and A. Zemlyakov, Mathematics of Billiards (Cambridge University Press, Cambridge, 1995) 463–473.

    Google Scholar 

  • G. Galperin, A. Stepin and Y. Vorobetz, Periodic billiard orbits in polygons, Russ. Math. Surv. 47 (1992) 5–80.

    Google Scholar 

  • M. Gaudin, Reduction du probleme du billiard quantique triangulaire, J. de Phys. 48 (1987) 1633.

    Google Scholar 

  • S. Gelbart and H. Jacquet, A relation between automorphic representations of GL Ann. Sci. Ecole Norm. Sup 11 (1978) 471–542.

    MathSciNet  MATH  Google Scholar 

  • S. Gelbart and I. Piatetski-Shapiro, On Shimura’s correspondence for modular forms of half integral weight, in Automorphic Forms, Representation Theory and Arithmetic (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  • B. Georgeot, Chaos, courbure negative et arithmetique (thesis, Universite de Paris-Sud, 1993).

    Google Scholar 

  • C. Gérard, Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convexes, Bull. Soc. Math. Fr. 116, no. 31 (1989).

    Google Scholar 

  • C. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. math. Phys. 108 (1987) 391–421.

    MathSciNet  MATH  Google Scholar 

  • C. Gérard and J. Sjöstrand, Resonances en limite semiclassique et exposants de Lyapunov, Comm. math. Phys. 116 (1988) 193–213.

    MathSciNet  MATH  Google Scholar 

  • P. Gerard and E. Leichtman, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J. 71 (1993) 559–607.

    MathSciNet  MATH  Google Scholar 

  • A. Ghosh, On the Riemann zeta function-mean value theorems and the distribution of |S(t)|, J. Numb. Thy. 17 (1983) 93–102.

    MATH  Google Scholar 

  • S. Girvin and R. Prange, The Quantum Hall Effect (Springer-Verlag, New York, 1990).

    Google Scholar 

  • D. Goldfeld, Analytic and arithmetic theory of Poincaré series, Asterisque 61 (1979) 95–107.

    MathSciNet  MATH  Google Scholar 

  • D. Goldfeld, On convolutions of non-holomorphic Eisenstein series, Adv. in Math. 39 (1981) 240–256.

    MathSciNet  MATH  Google Scholar 

  • D. Goldston, On the pair correlation conjecture for zeros of the Riemann zeta function, J. reine ang. Math. 385 (1988) 24–40.

    MathSciNet  MATH  Google Scholar 

  • A. Good, Local analysis of Selberg’s trace formula, LNM 1040 (Springer Verlag, Berlin, 1983).

    Google Scholar 

  • C. Gordon, The Laplace spectra versus the length spectra of Riemannian manifolds, in Nonlinear Problems in Geometry, Cont. Math. 51 (1986) 63–80.

    Google Scholar 

  • C. Gordon, When your can’t hear the shape of a manifold, Math. Intell. 11 (1989) 39–47.

    MATH  Google Scholar 

  • C. Gordon, Isospectral closed Riemannian manifolds which are not locally isometric, J. Diff. Geom. 37 (1993) 639–650.

    MATH  Google Scholar 

  • C. Gordon and E. S. Wilson, Isospectral deformations of compact solvmanifolds, J. Diff. Geom. 19 (1984) 245–256.

    MathSciNet  Google Scholar 

  • C. Gordon and E. Wilson, The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J. 33 (1986) 253–271.

    MathSciNet  MATH  Google Scholar 

  • C. Gordon, D. Webb and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Inv. Math. 110 (1993) 1–22.

    MathSciNet  Google Scholar 

  • C. Gordon, D. Webb, and S. Wolpert, One cannot hear the shape of a drum, Bull. AMS (1993) 134–138.

    Google Scholar 

  • H. D. Gräf, H. L. Harney, H. Lengener, C. H. Lewenkopf, et al., Distribution of eigenmodes in a superconducting stadium billiard with chaotic dynamics, Phys. Rev. Lett. 69 (1992) 1296–1299.

    Google Scholar 

  • S. Gräffi and A. Martinez, Ergodic properties of infinite harmonic crystals: an analytic approach, (preprint, 1995).

    Google Scholar 

  • C. Grosche, The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential, Ann. Phys. 187 (1988) 110–134.

    MathSciNet  MATH  Google Scholar 

  • C. Grosche, Energy-level statistics of an integrable billiard system in a rectangle in the hyperbolic plane, J. Phys. A25 (1992) 4573–4594.

    MathSciNet  Google Scholar 

  • C. Grosche, Path Integrals, Hyperbolic Spaces, and Selberg Trace Formulae Formulae (World Scientific, Singapore, 1996)

    MATH  Google Scholar 

  • V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved 2-manifolds, Top. 19 (1980) 153–180.

    Google Scholar 

  • L. Guillope, Sur la distribution des longueurs des geodesique fermees d’une surface compacte a bord totalement geodesique, Duke Math. J. 53 (1986) 827–848.

    MathSciNet  MATH  Google Scholar 

  • L. Guillope, Fonctions zeta de Selberg et surfaces de geometrie finie, Ad. Studies Pure Math. 21 (1992) 33–70.

    MathSciNet  Google Scholar 

  • L. Guillopé and M. Zworski, Upper bounds on the number of resonances for non-compact Riemann surfaces, (preprint, 1994).

    Google Scholar 

  • E. Gutkin, Billiard flows on almost integrable polyhedral surfaces, Erg. Thy. Dyn. Sys. 4 (1984) 569–584.

    MathSciNet  MATH  Google Scholar 

  • E. Gutkin, Billiards in polygons, Physica 19D (1986) 311–333.

    MathSciNet  Google Scholar 

  • E. Gutkin, Billiards in polygons: survey of recent results, J. Stat. Phys. 83 (1996) 7–26.

    MathSciNet  MATH  Google Scholar 

  • E. Gutkin and N. Haydn, Topological entropy of generalized polygon exchanges, Bull. AMS 32 (1995) 50–56.

    MathSciNet  MATH  Google Scholar 

  • E. Gutkin and C. Judge, Geometry and arithmetic of translation surfaces with applications to polygonal billiards, (preprint, 1996).

    Google Scholar 

  • E. Gutkin and A. Katok, Caustics for inner and outer billiards, Comm. Math. Phys. 173 (1995) 101–133.

    MathSciNet  MATH  Google Scholar 

  • M. Gutzwiller, Stochastic behavior in quantum scattering, Physica 7D (1983) 341–355.

    MathSciNet  Google Scholar 

  • M. Gutzwiller, The geometry of quantum chaos, Physica Scripta T9 (1985) 184–l92.

    MathSciNet  MATH  Google Scholar 

  • M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, New York, 1990).

    MATH  Google Scholar 

  • J. H. Hannay and M. V. Berry, Quantization of linear maps on a torus — Fresnel diffraction by a periodic grating, Physica D1 (1980) 267–291.

    MathSciNet  Google Scholar 

  • J. H. Hannay and A. M. Ozorio de Almeida, Periodic orbits and a correlation function for the semiclassical density of states, J. Phys. A17 (1984) 3429–3440.

    Google Scholar 

  • J. H. Hannay, J. Keating and A. Ozorio de Almeida, Optical realization of the baker’s transformation, Nonlin. 7 (1994) 1327–1342.

    MATH  Google Scholar 

  • G. H. Hardy, The average order of the arithmetical functors P(x) and A(x), Proc. Lond. Math. Soc. 15 (1916) 192–213.

    MATH  Google Scholar 

  • G. H. Hardy and J. E. Littlewood, Acta Math. 44 (1923) 1–70.

    MathSciNet  MATH  Google Scholar 

  • N. Haydn, Gibbs functionals on subshifts, Comm. Math. Phys. 134 (1990) 217–236.

    MathSciNet  MATH  Google Scholar 

  • D. Heath-Brown, Gaps between primes and the pair correlation of zeros of the zeta function, Acta Arith. 41 (1982) 85–99.

    MathSciNet  MATH  Google Scholar 

  • D. R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arith. 60 (1992) 389–415.

    MathSciNet  MATH  Google Scholar 

  • D. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J. 43 (1976) 441–482.

    MathSciNet  MATH  Google Scholar 

  • D. Hejhal, The Selberg Trace Formula for PSL(2, R), Vol. I, LNM 548 (1976).

    MATH  Google Scholar 

  • D. Hejhal, The Selberg trace formula for PSL(2, R), vol. 2, LNM 1001 (1981).

    Google Scholar 

  • D. A. Hejhal, Eigenvalues of the Laplacian for PSL(2, Z): “some new results and computational techniques, in International Symposium in Memory of Hua Loo-Keng”, Vol. 1 (Springer, 1991) 59–102.

    Google Scholar 

  • D. Hejhal, Eigenvalues of the Laplacian for Hecke triangle groups, Mem. AMS 469 (1992)

    Google Scholar 

  • D. Hejhal, On the distribution of zeros of a certain class of Dirichlet series, Inter. Math. Res. Notes 4 (1992) 83–91.

    MathSciNet  Google Scholar 

  • D. A. Hejhal and S. Arno, On Fourier coefficients of Maass waveforms for PSL(2, Z), Math. Comp. 61 (1993) 245–267.

    MathSciNet  MATH  Google Scholar 

  • D. Hejhal and B. Rackner, On the topography of Mass wave forms for PSX(2, Z), Exp. Math. 1 (1992) 275–305.

    MathSciNet  MATH  Google Scholar 

  • B. Helffer, A. Martinez and E. Robert, Ergodicite et limite semiclassique, Comm. Math. Phys. 109 (1987) 313–326.

    MathSciNet  MATH  Google Scholar 

  • S. Helgason, Groups and Geometric analysis (Academic Press, New York, 1984).

    MATH  Google Scholar 

  • E. Heller, Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits, Phys. Rev. Lett. 53 (1984) 1515–1518.

    MathSciNet  Google Scholar 

  • E. Heller and S. Tomsovic, Postmodern quantum mechanics, Physics Today 7 (1993) 38–46.

    Google Scholar 

  • M. Henon and J. Wisdom, The Benettin-Strelcyn oval billiard revisited, Physica 8D (1983) 157–169.

    MathSciNet  Google Scholar 

  • F. Henyey and N. Pomphrey, The autocorrelation function of a pseudointegrable system, Physica 6D (1982) 78–94.

    MathSciNet  Google Scholar 

  • A. Hobson, J. Math. Phys. 16 (1976) 2210–2214.

    MathSciNet  Google Scholar 

  • L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968) 193–218.

    MathSciNet  MATH  Google Scholar 

  • H. Huber, Zur analytischen theorie hyperbolischer raumformen und bewegungsgruppen, I, II, Math. Ann. 138 (1959)1–26;

    MathSciNet  MATH  Google Scholar 

  • H. Huber, Zur analytischen theorie hyperbolischer raumformen und bewegungsgruppen, I, II, Math. Ann. 142 (1961) 385–398.

    MathSciNet  MATH  Google Scholar 

  • A. Hüffmann, Disordered wires from a geometric viewpoint, J. Phys. A23 (1990) 5733–5744.

    Google Scholar 

  • M. Huxley, Scattering matrices for congruence subgroups, in Modular Forms (R. A. Rankin, ed., Ellis Horwood, 1984).

    Google Scholar 

  • M. Huxley, Exponential sums and lattice points, Proc. Lond. Math. Soc. 60 (1990) 470–502.

    MathSciNet  Google Scholar 

  • M. Huxley, Exponential sums and lattice points, II, Proc. Lond. Math. Soc. 66 (1993) 279–301.

    MathSciNet  MATH  Google Scholar 

  • R. Iengo and D. Li, Quantum mechanics and quantum Hall effect on Riemann surfaces, preprint SISSA/ISAS/100/93.

    Google Scholar 

  • S. Iida, H. A. Weidenmüller and J. A. Zuk, Wave propagation through disordered media and universal conductance, Phys. Rev. Lett. 64 (1990) 583–586.

    Google Scholar 

  • S. Iida, H. A. Weidenmüller and J. A. Zuk, Statistical scattering theory, the supersymmetry method and universal conductance fluctuations, Ann. Phys. 200 (1990) 219–270.

    Google Scholar 

  • M. Ikawa, On the poles of the scattering matrix for two convex obstacles, J. Math. Kyoto Univ. 23 (1983) 127–194;M. Ikawa, On the poles of the scattering matrix for two convex obstacles, J. Math. Kyoto Univ. 23 (1983) 795–802.

    Google Scholar 

  • M. Ikawa, Precise information on the poles of the scattering matrix for two strictly convex obstacles, J. EDP St. Jean de Monts (1985).

    Google Scholar 

  • A. Ikeda, Isospectral problem for spherical space forms, in Spectra of Riemannian Manifolds (ed., M. Berger et al., Kaigai Publications, 1983) 57–63.

    Google Scholar 

  • Y. Imry, Europhys. Lett. 1 (1986) 249.

    Google Scholar 

  • A. Ishibashi, D. Ravenhall, R. Schult and H. Wyld, Energy levels of charged particles confined in a multiply connected structure in a magnetic field, J. App. Phys. 73 (1993) 2364.

    Google Scholar 

  • H. Iwaniec, Prime geodesic theorem, J. Reine Angew. Math. 349 (1984) 136–159.

    MATH  Google Scholar 

  • H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent, math. 87 (1987) 385–401.

    MathSciNet  MATH  Google Scholar 

  • H. Iwaniec, Small eigenvalues of Laplacian for Γ0(N), Acta Arith. LVI (1990) 65–82.

    MathSciNet  Google Scholar 

  • H. Iwaniec and P. Sarnak, L norms of eigenfunctions of arithmetic surfaces, Ann. Math 141 (1995) 301–320.

    MathSciNet  MATH  Google Scholar 

  • D. Jakobson, Quantum unique ergodicity for Eisenstein series on PSL 2(Z)\PSL 2(R), Ann. Inst. Fourier, Grenoble 44 (1994) 1477–1504.

    MathSciNet  MATH  Google Scholar 

  • D. Jakobson, Quantum limits on flat tori, (preprint, 1995).

    Google Scholar 

  • R. Jalabert and J-L Pichard, Quantum mesoscopic scattering: disordered systems and Dyson circular ensembles, CEA-Saclay S94/070.

    Google Scholar 

  • R. A. Jalabert, J. L. Pichard, and C. W. J. Beenakker, Long-range energy level interaction in small metallic particles, Europhys. Lett. 24 (1993) 1–6.

    Google Scholar 

  • R. A. Jalabert, J. L. Pichard and C. W. J. Beenakker, Universal quantum signatures of chaos in ballistic transport, Europhys. Lett. 27 (1994) 255–260.

    Google Scholar 

  • R. A. Jalabert, A. D. Stone and Y. Alhassid, Statistical theory of coulomb blockade oscillations: quantum chaos in quantum dots, Phys. Rev. Lett. 68 (1992) 3468–3471.

    Google Scholar 

  • D. Joyner, Distribution Theorems of L-Functions (Pitman, Boston, 1986).

    MATH  Google Scholar 

  • D. Joyner, On the Montgomery-Dyson hypothesis, Proc. Amalfi Conf. Anal. Number Theory, (ed. E. Bombieri, et al., 1992) 331–369.

    Google Scholar 

  • D. Joyner, A note on gaps between zeros of L-functions, (preprint, 1995).

    Google Scholar 

  • C. Judge, (thesis, University of Maryland, 1993).

    Google Scholar 

  • C. Judge, On the existence of Maass cusp forms on hyperbolic surfaces with cone points, J. AMS (to appear, 1994).

    Google Scholar 

  • M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73 (1966) 1–23.

    MATH  Google Scholar 

  • D. Kashdan, Construction of Γ—rational groups, Func. Anal. Appl. 2 (1968).

    Google Scholar 

  • A. Katok, The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys. 111 (1987) 151–160.

    MathSciNet  MATH  Google Scholar 

  • A. Katok and B. Hasselblatt, Introduction of the Modern Theory of Dynamical Systems (Cambridge University Press, Cambridge, 1995).

    MATH  Google Scholar 

  • A. Katok and J.-M. Strelcyn, Invariant manifolds, entropy and billiards; smooth maps with singularities, LNM 1222 (Springer, New York, 1986).

    MATH  Google Scholar 

  • J. Keating, The semiclassical sum rule and Riemann’s zeta-function, in Quantum Chaos (ed. H. Cerdeira et al., World Scientific, Singapore, 1991) 280–294.

    Google Scholar 

  • J. Keating, The cat maps: quantum mechanics and classical motion, Nonlin. 4 (1991) 309–341.

    MathSciNet  MATH  Google Scholar 

  • J. Keating, The Riemann zeta-function and quantum chaology, (preprint, 1991).

    Google Scholar 

  • J. Keating, The quantum mechanics of chaotic systems or Can one hear the chaology of a drum? (preprint).

    Google Scholar 

  • J. Keating, The Riemann zeta function and quantum chaology, in Quantum Chaos (ed., G. Casati et al., North-Holland, Amsterdam, 1993) 145–185.

    Google Scholar 

  • J. Keating and M. Berry, J. Phys. A20 (1987) L1139.

    MathSciNet  Google Scholar 

  • J. Keating and M. Sieber, Proc. Roy. Soc. A447 (1994) 413.

    MathSciNet  Google Scholar 

  • D. G. Kendall, On the number of lattice points inside a random oval, Quart. J. Math. 19 (1948) 1–26.

    Google Scholar 

  • S. Kerckhoff, S. Masur, and H. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. Math. 124 (1986) 293–311.

    MathSciNet  MATH  Google Scholar 

  • K. Khuri-Makdisi, Relations between Fourier coefficients of nonholomorphic Hilbert modular forms of half-integral weight and special values of Dirichlet series (thesis, Princeton University, 1993).

    Google Scholar 

  • Y. Kitaoka, Positive definite quadratic forms with the same representation numbers, Arch. Math. 28 (1977) 495–497.

    MathSciNet  MATH  Google Scholar 

  • H. D. Kloosterman, The behaviour of general theta functions under the modular group and the characters of binary modular congruence groups I, Ann. Math. 47 (1946) 317.

    MathSciNet  MATH  Google Scholar 

  • A. Knauf, Ergodic and topological properties of coulombic periodic potentials, Comm. Math. Phys. 110 (1987) 89–112.

    MathSciNet  MATH  Google Scholar 

  • A. Knauf, Coulombic periodic potentials: the quantum case, Ann. Phys 191 (1989) 205–240.

    MathSciNet  Google Scholar 

  • M. Kneser, Lineare relationen zwischen darstellungszahlen quadratischer formen, Math. Ann. 168 (1967) 31–39.

    MathSciNet  MATH  Google Scholar 

  • W. Kohnen, Modular forms of half-integral weight on Γ0(4), Math. Ann. 248 (1980) 249–266.

    MathSciNet  MATH  Google Scholar 

  • W. Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (1985) 237–268.

    MathSciNet  MATH  Google Scholar 

  • W. Kohnen, Newforms of half-integral weight, J. reine angew. Math. 32–72.

    Google Scholar 

  • W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent, math. 64 (1981) 175–198.

    MathSciNet  MATH  Google Scholar 

  • D. Kosygin, A. Minasov and Y. Sinai, Statistical properties of the Laplace- Beltrami operator on Liouville surfaces, Usp. Mat. Nauk 48 (1993) 3–130.

    MathSciNet  MATH  Google Scholar 

  • S-Y. Koyama, Determinant expression of Selberg zeta functions, Trans. AMS 324 (1991) 149–168

    MathSciNet  MATH  Google Scholar 

  • S-Y. Koyama, Determinant expression of Selberg zeta functions, Trans. AMS 329 (1992) 755–772

    MathSciNet  MATH  Google Scholar 

  • S-Y. Koyama, Proc. AMS 113 (1991) 303–311.

    MathSciNet  MATH  Google Scholar 

  • V. Kozlov and D. Treshchev, Billiard — A Genetic Introduction to the Dynamics of Systems with Impacts (American Math. Society, Providence, 1991).

    Google Scholar 

  • T. Kubota, Elementary Theory of Eisenstein Series, (Wiley, New York, 1973).

    MATH  Google Scholar 

  • A. Kudrolli et al., Signatures of chaos in quantum billiards: microwave experiments, Phys. Rev. E49 (1994) R11–R14.

    Google Scholar 

  • A. Kudrolli, V. Kidambi and S. Sridhar, Experimental studies of chaos and localization in quantum wavefunction, Phys. Rev. Lett. 75 (1995) 822–825.

    Google Scholar 

  • A. Kudrolli and S. Sridhar, Microwave 2-disk scattering, (preprint, 1995).

    Google Scholar 

  • A. Kudrolli and S. Sridhar, GOE in a microwave stadium billiard, Phys Rev. Lett. 76 (1996) 3036.

    Google Scholar 

  • A. Kudrolli and S. Sridhar, Experiments on quantum chaos using microwav cavities: results for the psuedo-integrable L-billiard, (preprint, 1996).

    Google Scholar 

  • M. Kus and K. Zyczkowski, Phys. Rev. A44 (1991) 956.

    MathSciNet  Google Scholar 

  • L. Landau, Z. Phys. 64 (1930) 629.

    MATH  Google Scholar 

  • R. Langlands, Problems in the theory of automorphic forms, LNM 170 (1970) 18–61.

    MathSciNet  Google Scholar 

  • P. Lax and R. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Func. Anal. 46 (1982) 280–350.

    MathSciNet  MATH  Google Scholar 

  • P. Lax and R. Phillips, Scattering theory for automorphic functions, Ann. of Math. Studies (Princeton, 1976).

    MATH  Google Scholar 

  • J. Leboeuf and A. Voros, Chaos revealing multiplicative representation of quantum eigenstates, J. Phys. A23 (1990) 1765–1773.

    MathSciNet  Google Scholar 

  • P. A. Lee and A. D. Stone, Universal conductance fluctuations in metals, Phys. Rev. Lett 55 (1985) 1622–1625.

    Google Scholar 

  • P. A. Lee, A. D. Stone and H. Fukuyama, Universal conductance fluctuations in metals: effects of finite temperature, interactions and magnetic fields, Phys. Rev. B35 (1987) 1039–1070.

    Google Scholar 

  • M. Lenci, Ergodic properties of the quantum ideal gas in the Maxwell-Boltzman statistics, (preprint, 1996).

    Google Scholar 

  • C. H. Lewenkopf and H. A. Weidenmüller, Stochastic versus semiclassical approach to quantum chaotic scattering, Ann. Phys. 212 (1991) 53–83.

    MATH  Google Scholar 

  • W. Li, Newforms and functional equations, Math. Ann. 212 (1975) 285–315.

    MathSciNet  MATH  Google Scholar 

  • G. Lion and M. Vergne, The Weil representation, Maslov index and Theta Series (Birkhauser, Boston, 1980).

    MATH  Google Scholar 

  • W. Luo, On the nonvanishing of Rankin-Selberg L-functions, Duke Math. J. 69 (1993) 411–425.

    MathSciNet  MATH  Google Scholar 

  • W. Luo, Zeros of Hecke L-functions associated with cusp forms, Acta Arith. 71 (1995) 139–158.

    MathSciNet  MATH  Google Scholar 

  • W. Luo, Z. Rudnick, and P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. Func. Anal. 5 (1995) 387–401.

    MathSciNet  MATH  Google Scholar 

  • W. Luo and P. Sarnak, Number variance for arithmetic hyperbolic surfaces, Comm. Math. Phys. 161 (1994) 419–432.

    MathSciNet  MATH  Google Scholar 

  • W. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on PSL 2(Z)\H 2, Publ. IHES (to appear).

    Google Scholar 

  • S. McDonald and A. Kaufman, Spectrum and eigenfunctions for a Hamil-tonian with stochastic trajectories, Phys. Rev. Lett. 42 (1979) 1189–1191.

    Google Scholar 

  • S. McDonald and A. Kaufmann, Wave chaos in the stadium: statistical properties of short-wave solutions of the Helmholtz equation, Phys. Rev. A37 (1988) 3067–3086.

    Google Scholar 

  • H. Maass, Über eine neue art von nichtanalytischen automorphen funktionen und die bestimmung Dirichletscher reihen durch funktional-gleichungen, Math. Ann. 121 (1949) 141–182.

    MathSciNet  MATH  Google Scholar 

  • H. Maass, Uber die raumliche Verteilung der punkte in gittern mit indefiniter metrik, Math. Ann. 138 (1959) 287–315.

    MathSciNet  MATH  Google Scholar 

  • C. Maclachlan and W. Reid, Commensurability classes of arithmetic Kleinian groups and their Fuchsian subgroups, Math. Proc. Camb. Phil. Soc. 102 (1987) 251–257.

    MathSciNet  MATH  Google Scholar 

  • C. Maclachlan and W. Reid, The arithmetic structure of tetrahedral groups of hyperbolic isometries, Mathematika 36 (1989) 221–240.

    MathSciNet  MATH  Google Scholar 

  • W. Magnus, Non-Euclidian Tesselations and their Groups (Academic Press, New York, 1974).

    Google Scholar 

  • E. Margulis, On some application of ergodic theory to the study of manifolds of negative curvature, Func. Anal. Appl. 3 (1969) 89–90.

    MathSciNet  Google Scholar 

  • R. Markarian, New ergodic billiards: exact results, Nonlin. 6 (1993) 819–841.

    MathSciNet  MATH  Google Scholar 

  • J. Marklof, On multiplicities in length spectra of arithmetic hyperbolic three-orbifolds, Nonlin. 9 (1996) 517.

    MathSciNet  MATH  Google Scholar 

  • E. Marshalek and J. da Providencia, Sum rules, random-phase- approximations and constraint self-consistent fields, Phys. Rev. C7 (1973) 2281–229

    Google Scholar 

  • H. Masur, Closed trajectories for quadratic differentials with an applicatio to billiards, Duke. Math. J. 53 (1986) 307–314.

    MathSciNet  MATH  Google Scholar 

  • H. Masur, The growth rate for trajectories of a quadratic differential, Erg. Thy. Dyn. Sys. 10 (1990) 151–176.

    MathSciNet  MATH  Google Scholar 

  • C. Matthies and F. Steiner, Selberg’s zeta function and the quantization of chaos, Phys. Rev. A44 (1991) R7877–R7880.

    MathSciNet  Google Scholar 

  • M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels (Academic, New York, 1990).

    Google Scholar 

  • P. A. Mello, Central limit theorems on groups, J. Math. Phys. 27 (1986) 2876–2891.

    MathSciNet  MATH  Google Scholar 

  • P. A. Mello and J. L Pichard, Maximum entropy approach to quantum electronic transport, Phys. Rev. B40 (1989) 5276–5278.

    Google Scholar 

  • P. A. Mello and J. L. Pichard, J. Phys. I (Paris) 1 (1991) 493.

    Google Scholar 

  • P. A. Mello, P. Pereyra and N. Kumar, Macroscopic approach to multichannel disordered conductors, Ann. Phys. 181 (1988) 290–317.

    Google Scholar 

  • P. A. Mello and A. D. Stone, Maximum entropy model for quantum mechanical interference effects in metallic conductors, Phys. Rev. B44 (1991) 3559–3576.

    Google Scholar 

  • V. I. Mel’nikov, Fiz. Tverd. Tela 23 (1981) 782.

    Google Scholar 

  • J. Meisen, P. Brouwer, K. Frahm and C. Beenakker, Induced superconductivity distinguishes chaotic from integrable billiards, (preprint, 1996).

    Google Scholar 

  • J. Meisen, P. Brouwer, K. Frahm and C. Beenakker, Superconductor-proximity effect in chaotic and integrable billiards, (preprint, 1996).

    Google Scholar 

  • W. H. Miller, Adv. Chem. Phys. 25 (1974) 69.

    Google Scholar 

  • W. H. Miller, J. Chem. Phys. 63 (1975) 996.

    Google Scholar 

  • J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. 51 (1964) 542.

    MathSciNet  MATH  Google Scholar 

  • J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. Math. 21 (1976) 293–329.

    MathSciNet  MATH  Google Scholar 

  • M. Min-Oo, Spectral rigidity for manifolds with negative curvature operator, Cont. Math. Nonlin Problems in Geom. 51 (1986) 99–103.

    MathSciNet  Google Scholar 

  • H. L. Montgomery, The pair correlation of zeros of the zeta function, in Analytic Number Theory (ed., H. G. Diamond) Proc. Symp. Pure Math. 24 (1973) 181–193.

    Google Scholar 

  • H. L. Montgomery, Proc. Symp. Pure Math 38 (1976) 307–310.

    Google Scholar 

  • C. Moreno, Explicit formulas in the theory of automorphic forms, LNM 626 (1977) 73–216.

    Google Scholar 

  • G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. Math. Studies 78 (1973).

    Google Scholar 

  • E. Mucciolo, R. Capaz, B. Altshuler, and J. Joannopoulos, Manifestation of quantum chaos in electronic band structures, (preprint, 1994).

    Google Scholar 

  • W. Müller, Spectral theory for Riemannian manifolds with cusps and related trace formula, Math. Nach. III (1983) 197–288.

    Google Scholar 

  • W. Müller, The point spectrum and spectral geometry for Riemannian manifolds with cusps, Math. Nach. 125 (1986) 243–257.

    MATH  Google Scholar 

  • W. Müller, Spectral geometry and scattering theory for certain complete surfaces of finite volume, Inven. math. 109 (1992) 265–305.

    MATH  Google Scholar 

  • M. Ram Murty, Selberg’s conjectures and Artin L—functions, Bull. AMS 31 (1994) 1–14

    MATH  Google Scholar 

  • K. A. Muttalib, J. L. Pichard, and A. D. Stone, Random matrix theory and universal statistics for disordered quantum conductors, Phys. Rev. Lett. 59 (1987) 2475–2478.

    Google Scholar 

  • K. Nakamura, Quantum Chaos (Cambridge University Press, Cambridge, 1993).

    MATH  Google Scholar 

  • K. Nakamura and H. Ishio, J. Phys. Soc. Jap. 61 (1992) 3939.

    Google Scholar 

  • K. Nakamura and H. Thomas, Phys. Rev. Lett. 61 (1988) 247.

    MathSciNet  Google Scholar 

  • S. Niwa, Modular forms of half-integral weight and the integral of certain theta functions, Nagoya Math. J. 56 (1974) 147–161.

    MathSciNet  Google Scholar 

  • H. Ninnemann, Gutzwiller’s octagon and the triangular group T*(2, 3, 8) as models for the quantization of chaotic systems by Selberg’s trace formula (thesis, 1994); Int. J. Mod. Phys. B9 (1995) 1647.

    Google Scholar 

  • S. Niwa, On Shimura’s trace formula, Nagoya Math. J. 66 (1977) 183–202.

    MathSciNet  MATH  Google Scholar 

  • A. M. Odlyzko, On the distribution of spacings between zeros of the zeta function, Math. Comput. 48 (1987) 273–308.

    MathSciNet  MATH  Google Scholar 

  • A. M. Odlyzko, The 1020-th zero of the Riemann zeta function and 70 million of its neighbors, (preprint, 1989).

    Google Scholar 

  • H. Okada, T. Hashizume and H. Hasegawa, Transport characterization of Schottky in-plane gate Al 0.2 GA 0.7 As/GaAs quantum wire transitors realized by in-situ electrochemical process, Jpn. J. Appl. Phys. 34 (1995) Pt. 1, No. 12B 6971–6976.

    Google Scholar 

  • B. Osgood, R. Phillips and P. Sarnak, Extremals of determinants of Laplacians, J. Fun. Anal. 80 (1988); 148–211; 212–234;

    MathSciNet  MATH  Google Scholar 

  • B. Osgood, R. Phillips and P. Sarnak, Extremals of determinants of Laplacians, Ann. Math. 129 (1989) 293–362.

    MathSciNet  MATH  Google Scholar 

  • A. Pandey, Ann. Phys. 119 (1979) 170.

    Google Scholar 

  • A. Pandey, O. Bohigas and M.-J. Giannoni, Level repulsion in teh spectrum of two-dimensional harmonic oscillators, J. Phys. A 22 (1989) 4083–4088.

    Google Scholar 

  • W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. Math. 118 (1983) 573–591.

    MathSciNet  MATH  Google Scholar 

  • S. J. Patterson, The Laplacian operator on a Riemann surface, Compos. Math. 31 (1975) 83–107.

    MathSciNet  MATH  Google Scholar 

  • S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976) 241–273.

    MathSciNet  MATH  Google Scholar 

  • S. J. Patterson, Examples of Fuchsian groups, Proc. Lond. Math. Soc. 36 (1979) 276–298.

    MathSciNet  Google Scholar 

  • S. J. Patterson, On a lattice-point problem in hyperbolic space and related questions in spectral theory, Ark. f. matem. 26 (1988) 167–172.

    MathSciNet  MATH  Google Scholar 

  • N. Pavloff and C. Schmit, Diffractive orbits in quantum billiards, Phys. Rev. Lett. 75 (1995) 61–64.

    MathSciNet  MATH  Google Scholar 

  • P. Pechukas, Distribution of energy eigenvalues in the irregular spectrum, Phys. Rev. Let. 51 (1983) 943–946.

    MathSciNet  Google Scholar 

  • I. Percival and F. Vivaldi, Arithmetical properties of strongly chaotic motions, Physica D25 (1987) 105–130.

    MathSciNet  Google Scholar 

  • P. A. Perry, The Selberg zeta function and scattering poles for Kleinian groups, Bull. AMS 24 (1991) 327–333.

    MathSciNet  MATH  Google Scholar 

  • H. Pesce, Deformations isospectrales sur certaines nilvarietes et finitude spectrale des varietes de Heisenberg, Ann. Sci. Ecole Norm. Sup. 25 (1992) 515–538.

    MathSciNet  MATH  Google Scholar 

  • H. Pesce, Une formule de Poisson pour les varietes de Heisenberg, Duke Math. J. 73 (1994) 79–95.

    MathSciNet  MATH  Google Scholar 

  • Y. Pesin, Sov. Math. Dokl. 17 (1976) 196–199;

    MATH  Google Scholar 

  • Y. Pesin, Russ. Math. Sur. 32 (1977), no. 4, 55–114.

    MathSciNet  Google Scholar 

  • H. Petersson, Zur analytischen théorie der grenzkreisgruppen, Math. Ann. 115 (1938) 23–67.

    MathSciNet  Google Scholar 

  • V. Petkov and L. Stoyanov, Geometry of Reflecting Rays and Inverse Spectra Problems, (Wiley, New York, 1992).

    Google Scholar 

  • Y. Petridis, On the singular set, the resolvent and Fermi’s Golden Rule for finite volume hyperbolic surfaces, Manusc. math. 82 (1994) 331–347.

    MathSciNet  MATH  Google Scholar 

  • Y. Petridis, Spectral data for finite volume hyperbolic surfaces at the bottom ot the continuous spectrum, J. Func. Anal. 124 (1994) 61–94.

    MathSciNet  MATH  Google Scholar 

  • R. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of the PSL 2(R), Invent. Math. 80 (1984) 339–364.

    MathSciNet  Google Scholar 

  • R. Phillips and P. Sarnak, The Weyl theorem and the deformation of discrete groups, Comm. Pure and Appl. Math. 38 (1985) 853–866.

    MathSciNet  MATH  Google Scholar 

  • R. Phillips and P. Sarnak, Spectrum of Fermat curves, Geom. Funct. Anal. 1 (1991) 79–146.

    MathSciNet  Google Scholar 

  • R. Phillips and P. Sarnak, Perturbation theory for the Laplacian on automorphic functions, J. Amer. Math. Soc. 5 (1992) 1–32.

    MathSciNet  MATH  Google Scholar 

  • R. Phillips and P. Sarnak, Automorphic spectrum and Fermi’s golden rule, J. d’anal. Math. 59 (1992) 179–187.

    MathSciNet  MATH  Google Scholar 

  • R. Phillips and P. Sarnak, Cusp forms for character varieties, Geom. Func. Anal. 4 (1994) 93–118.

    MathSciNet  MATH  Google Scholar 

  • J. Plemelj, Monat. Math. Phys 15 (1909) 93.

    Google Scholar 

  • A. Pneuli, Scattering matrices and conductances of leaky tori, Ann. Phys. 231 (1994) 56–83.

    Google Scholar 

  • A. Pneuli, Chern numbers and Hall conductances of Riemann surfaces, (preprint, 1994).

    Google Scholar 

  • A. Pneuli, Adiabatic charge transport, the eta invariant and Hall conductance for spinors, (preprint, 1994a).

    Google Scholar 

  • M. Pollicott, On the rate of mixing of Axiom A flows, Inv. Math. 81 (1985) 413–426.

    MathSciNet  MATH  Google Scholar 

  • G. Pólya, Heurestic reasoning in the theory of numbers, Amer. Math. Mon. 66 (1959) 375–384.

    MATH  Google Scholar 

  • G. Pöschl and E. Teller, Bemerkungen zur Quantenmechanik des anharmonischen Oszillators, Z. Phys. 83 (1933) 143–151.

    Google Scholar 

  • E. Pollak, A quasiclassical model for resonance widths in quantal colinear reactive scattering, J. Chem. Phys. 76 (1982) 5843–5848.

    Google Scholar 

  • S. Prado, M. de Aguiar, J. Keating and R. de Carvalho, Semiclassical theory of magnetization for a two-dimensional non-interacting electron gas, J. Phys. A27 (1994) 6091–6106.

    Google Scholar 

  • V. Prigodin, K. B. Efetov and S. Iida, Statistics of conductance fluctuations in quantum dots, Phys. Rev. Lett. 71 (1993) 1230–1233.

    Google Scholar 

  • V. Prigodin, N. Taniguchi, A. Kudrolli, V. Kidambi and S. Sridhar, Spatial correlation in quantum chaotic systems with time-reversal symmetry: theory and experiment, (preprint, 1995).

    Google Scholar 

  • H. Primak, H. Schanz, U. Smilansky and I. Ussishkin, Diffraction effects in the quantization of concave billiards, (preprint, 1996).

    Google Scholar 

  • H. Primak and U. Smilansky, Quantization of the 3-dimensional Sinai billiard, Phys. Rev. Lett. 74 (1995) 4831–4834.

    Google Scholar 

  • T. Prosen, Statistical properties of matrix elements in a Hamilton system between integrability and chaos, Ann. Phys. 235 (1994) 115–164.

    MathSciNet  MATH  Google Scholar 

  • T. Prosen, Numerical demonstration of the semiclassical matrix element probability distribution between integrability and chaos, J. Phys. A27 (1994) L569–L577.

    MathSciNet  Google Scholar 

  • T. Prosen and M. Robnik, Distribution and fluctuations of transition probabilities in a systems between integrability and chaos, J. Phys. A 26 (1993) L319–326.

    MATH  Google Scholar 

  • T. Prosen and M. Robnik, Energy level statistics in the transition region between integrability and chaos, J. Phys. A26 (1993) 2371–2387.

    MathSciNet  Google Scholar 

  • T. Prosen and M. Robnik, Distribution and fluctuation properties of transition probabilities in a system between integrability and chaos, J. Phys. A26 (1993) L319–L326.

    Google Scholar 

  • S. Rallis and G. Schiffman, Automorphic forms constructed from the Weil representation, holomorphic case, Amer. J. Math. 100 (1978) 1049–1122.

    MATH  Google Scholar 

  • B. Randol, Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Amer. Math. Soc. 80 (1974) 996–1000.

    MathSciNet  MATH  Google Scholar 

  • B. Randol, The length spectrum of Riemann surface is always of unbounded multiplicity, Proc. AMS 78 (1980) 455.

    MathSciNet  MATH  Google Scholar 

  • M. Ratner, The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Israel J. Math. 16 (1973) 181–197.

    MathSciNet  Google Scholar 

  • M. Ratner, The rate of mixing for geodesic and horocycle flows, Ergod. Theo. Dynam. Sys. 7 (1987) 267–288.

    MathSciNet  MATH  Google Scholar 

  • D. Ravenhall, H. Wyld, and R. Schult, Quantum Hall effect at a four-terminal junction, Phys. Rev. Lett. 62 (1989) 1780–1783.

    Google Scholar 

  • M. Reed and B. Simon, Methods of Modern Mathematical Physics 4 (Academic Press, New York, 1978).

    Google Scholar 

  • P. Richens, Unphysical singularities in semiclassical level density expansions for polygon billiards, J. Phys. A16 (1983) 3961–3970.

    Google Scholar 

  • P. Richens and M. Berry, Pseudointegrable systems in classical and quantum mechanics, Physica 2D (1981) 495–512.

    MathSciNet  Google Scholar 

  • J. M. Robbins and M. V. Berry, Discordance between quantum and classical correlation moments for chaotic system, J. Phys. A25 (1992) L961–965.

    MathSciNet  Google Scholar 

  • W. Rölcke, Das eigenwertproblem der automorphen formen in der hyperbolishen ebene, Math. Ann. 167 (1966) 292; 168 (1967) 261–324.

    MathSciNet  Google Scholar 

  • M. Robnik, Classical dynamics of a family of billiards with analytic boundaries, J. Phys. A16 (1983) 3971–3986.

    MathSciNet  Google Scholar 

  • M. Robnik, Quantising a generic family of billiards with analytic boundaries, J. Phys. A17 (1984) 1049–1074.

    MathSciNet  Google Scholar 

  • P. Rosenqvist, G. Vattay and A. Wirzba, Application of the diffraction trace formula to the three disk scattering system, J. Stat. Phys 83 (1996) 243–257.

    MathSciNet  MATH  Google Scholar 

  • P. Rosenqvist, N. Whelan and A. Wirzba, Small disks and semiclassical resonances, (preprint, 1996).

    Google Scholar 

  • Z. Rudnick and P. Sarnak, The behavior of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994) 195–213.

    MathSciNet  MATH  Google Scholar 

  • Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory, Duke Math. J. 81 (1996) 269–322.

    MathSciNet  MATH  Google Scholar 

  • D. Ruelle, Statistical Mechanics (Benjamin, New York, 1969).

    MATH  Google Scholar 

  • D. Ruelle, Thermodynamic formalism (Addison-Wesley, Reading, 1978).

    MATH  Google Scholar 

  • D. Ruelle, Locating resonances for Axiom A dynamical systems, J. Stat. Phys. 44 (1986) 281–292.

    MathSciNet  MATH  Google Scholar 

  • D. Ruelle, One dimensional Gibbs states and Axiom A diffeomorphisms, J. Diff. Geom. 25 (1987) 117–137.

    MathSciNet  MATH  Google Scholar 

  • H. H. Rugh, The correlation spectrum for hyperbolic analytic maps, Nonlinearity 5 (1992) 1237–1263.

    MathSciNet  MATH  Google Scholar 

  • H. H. Rugh, Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems, (preprint, 1994).

    Google Scholar 

  • R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta Math. 91 (1954) 245–301.

    MathSciNet  MATH  Google Scholar 

  • P. Sarnak, Class numbers of indefinite binary quadratic forms, J. Numb. Thy. 15 (1982) 229–247; 21 (1985) 333–346.

    MathSciNet  Google Scholar 

  • P. Sarnak, Additive number theory and Maass forms, LNM 1052 (1982) 286–309.

    MathSciNet  Google Scholar 

  • P. Sarnak, On cusp forms, Contemp. Math. 53 (1986) 393–407.

    MathSciNet  Google Scholar 

  • P. Sarnak, Determinants of Laplacians, Comm. Math. Phys. 110 (1987) 112–120.

    MathSciNet  Google Scholar 

  • P. Sarnak, Statistical properties of eigenvalues of the Hecke operators, (preprint, 1984).

    Google Scholar 

  • P. Sarnak, On cusp forms II, in I. Piatetski-Shapiro’s Festschrift (1990) 237–251.

    Google Scholar 

  • P. Sarnak, Some Applications of Modular Forms (Cambridge University Press, Cambridge, (1990).

    MATH  Google Scholar 

  • P. Sarnak, Arithmetic Quantum Chaos, First Annual R. A. Blyth Lectures (1993); Isr. Math. Conf. Proc. 8 (1995) 183–256.

    MathSciNet  Google Scholar 

  • P. Sarnak, Spectra and eigenfunctions of Laplacians, (preprint, 1995).

    Google Scholar 

  • P. Sarnak, Selberg’s eigenvalue conjecture, Notices AMS 42 (1995) 1272–1277.

    MathSciNet  MATH  Google Scholar 

  • C. Schmit, Triangular billiards on the hyperbolic plane: spectral properties, (preprint, 1991).

    Google Scholar 

  • C. Schmit and C. Jacquemin, Classical quantization of a compact billiard on the pseudo-sphere, (preprint, 1991).

    Google Scholar 

  • C. Schmit, Quantum and classical properties of some billiards on the hyperbolic plane, in Les Houches Lectures 52 (1991) 333–369.

    Google Scholar 

  • A. Schnirelman, Ergodic properties of eigenfunctions, Usp. Math. Nauk 29 (1974) 181–182.

    Google Scholar 

  • R. Schrader and M. Taylor, Semiclassical asymptotics, gauge fields and quantum chaos, J. Func. Anal. 83 (1989) 258–316.

    MathSciNet  MATH  Google Scholar 

  • R. Schubert, The trace formula and the distribution of eigenvalues of Schrödinger operators on manifolds all of whose geodesics are closed, (preprint, 1995).

    Google Scholar 

  • R. Schult, D. Ravenhall and H. Wyld, Quantum bound states in a classically unbound system of crossed wires, Phys. Rev. B39 (1989) 5476–5479.

    Google Scholar 

  • R. Schult, H. Wyld and D. Ravenhall, Quantum Hall effect and general narrow-wire circuits, Phys. Rev. B41 (1990) 12760.

    Google Scholar 

  • P. Seba, Wave chaos in singular quantum billiard, Phys. Rev. Lett. 64 (1990) 1855–1858

    MathSciNet  MATH  Google Scholar 

  • A. Seeger and C. Sogge, Bounds for eigenfunctions of differential operators, Ind. J. Math. 38 (1989) 669–682.

    MathSciNet  MATH  Google Scholar 

  • A. Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. B48 (1946) 89–155.

    MathSciNet  Google Scholar 

  • A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956) 47–87.

    MathSciNet  MATH  Google Scholar 

  • A. Selberg, On the estimation of Fourier coefficients of modular forms, in Proc. Sympos. Pure Math. 8 (1965) 1–15.

    MathSciNet  Google Scholar 

  • A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in Proc. Amalfi Conf. on Anal. Number Theory (ed. E. Bombieri et al., 1989); in Collected Papers, Vol. 2 (Springer-Verlag, Berlin, 1991) 47–63.

    Google Scholar 

  • T. Seligman, J. Verbaarschot and M. Zirnbauer, Phys. Rev. Lett. 53 (1985) 215;

    Google Scholar 

  • T. Seligman, J. Verbaarschot and M. Zirnbauer, J. Phys. A18 (1985) 2751–2770.

    MathSciNet  Google Scholar 

  • F. Shahidi, Langlands’ functoriality conjecture, (preprint, 1989).

    Google Scholar 

  • G. Shimura, On modular forms of half-integral weight, Ann. Math. 97 (1973) 440–481.

    MathSciNet  MATH  Google Scholar 

  • G. Shimura, On Fourier coefficients of Hilbert modular forms of half integral weight, Duke Math. J. 71 (1993) 502–557.

    MathSciNet  Google Scholar 

  • T. Shintani, On construction of holomorphic cusp forms of half-integral weight, Nagoya Math. J. 58 (1975) 83–126.

    MathSciNet  MATH  Google Scholar 

  • A. Shudo and Y. Shimizu, Extensive numerical study of spectral statistics for rational and irrational polygonal billiards, Phys. Rev. E47 (1993) 54–62.

    MathSciNet  Google Scholar 

  • A. Shushin and D. Wardlaw, Properties of time delay and S-matrix for chaotic scattering on a leaky surface of constant negative curvature, J. Phys. A25 (1992) 1503–1515.

    MathSciNet  Google Scholar 

  • M. Sieber, The hyperbola billiard: a model for the semiclassical quantization of chaotic systems (thesis, University of Hamburg, 1991).

    Google Scholar 

  • M. Sieber, H. Primack, et al. Semiclassical quantization of billiards with mixed boundary conditions, J. Phys. A28 (1995) 5041–5078.

    MathSciNet  Google Scholar 

  • M. Sieber, U. Smilansky, S. Creagh and R. Littlejohn, Non-generic spectral statistics in the quantized stadium billiard, J. Phys. A16 (1993) 6217–6230.

    MathSciNet  Google Scholar 

  • M. Sieber and F. Steiner, Classical and quantum mechanics of a strongly chaotic billiard system, Physica D44 (1990) 248–266.

    MathSciNet  Google Scholar 

  • M. Sieber and F. Steiner, Generalized periodic-orbits sum rules for strongly chaotic systems, Phys. Lett. A144 (1990) 159–163.

    MathSciNet  Google Scholar 

  • M. Sieber and F. Steiner, Quantum chaos in the hyperbola billiard, Phys. Lett. A148 (1990) 415–420.

    MathSciNet  Google Scholar 

  • M. Sieber and F. Steiner, On the quantizaion of chaos, Phys. Rev. Lett. 67 (1991) 1941–1944.

    MathSciNet  MATH  Google Scholar 

  • B. Simon, Resonance in N-body quantum system, Ann. Math. 97 (1973) 247–274.

    MATH  Google Scholar 

  • B. Simon, Nonclassical eigenvalue asymptotics, J. Fnal. Anal. 53 (1983) 84–98.

    MATH  Google Scholar 

  • B. Simons and B. Altshuler, Phys. Rev. Lett. 70 (1993) 4063.

    Google Scholar 

  • Ya. G. Sinai, The central limit theorem for geodesic flows on manifolds of constant negative curvature, Sov. Math. Dokl. 1 (1960) 983–987.

    MathSciNet  MATH  Google Scholar 

  • Ya. G. Sinai, Dynamical systems with elastic reflections, Ergodic properties of dispersing billiards, Russ. Math. Surv. 25 (1970) 137–191.

    MathSciNet  MATH  Google Scholar 

  • Ya. G. Sinai, Poisson distribution in a geometric problem, Adv. in Sov. Math. 3 (1991) 199–214.

    MathSciNet  Google Scholar 

  • Ya. G. Sinai, Mathematical problems in the theory of quantum chaos, LNM 1469 (1991) 41–59.

    MathSciNet  Google Scholar 

  • L. Sirko and P. Kock, Phys. Rev. E54 (1996) R21.

    Google Scholar 

  • J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. AMS 4 (1991) 729–769.

    MATH  Google Scholar 

  • J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles, I, Comm. Part. Diff. Eqs. 18 (1993) 847–857;

    MATH  Google Scholar 

  • J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles II, J. Fnal. Anal. 123 (1994) 336–367.

    MATH  Google Scholar 

  • J. Sjöstrand and M. Zworski, Estimation of the number of scattering poles near the real axis for strictly convex obstacles, Ann. Inst. Four. 43 (1993) 769–790.

    MATH  Google Scholar 

  • M. Skriganov, The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Invent. Math. 80 (1985) 107–121.

    MathSciNet  MATH  Google Scholar 

  • K. Slevin, J. L. Pichard, and P. A. Mello, Europhys. Lett. 16 (1991) 649.

    Google Scholar 

  • U. Smilansky, in Chaos and Quantum Physics, M. J. Giannoni et al. eds. (Elsevier, New York, 1990).

    Google Scholar 

  • U. Smilansky et al., J. Phys. A26 (1993) 2617;

    MathSciNet  Google Scholar 

  • U. Smilansky et al., J. Phys. A27 (1994) 4439.

    MathSciNet  Google Scholar 

  • F. T. Smith, Phys. Rev. 118 (1960) 349.

    MathSciNet  MATH  Google Scholar 

  • F. Smithies, Duke Math. J. 8 (1941) 107.

    MathSciNet  Google Scholar 

  • S. Sridhar, Phys. Rev. Lett. 67 (1991) 785.

    Google Scholar 

  • S. Sridhar and E. Heller, Physical and numerical experiments on the wave mechanics of classically chaotic systems, Phys. Rev. A46 (1992) R1728–R1731.

    Google Scholar 

  • S. Sridhar and A. Kudrolli, Experiments on not “Chearing the shape” of drums, Phys. Rev. Lett. 72 (1994) 2175–2178.

    Google Scholar 

  • G. Steil, Uber die eigenwerte des Laplace operators und de Hecke Operatoren fur SL(2, Z), (preprint, 1993).

    Google Scholar 

  • J. Stein and H.-J. Stöckmann, Phys. Rev. Lett. 68 (1992) 2867.

    Google Scholar 

  • F. Steiner, Quantum Chaos, in Universitat Hamburg 1994: Schlaglichter der Forschung zum 75. Jahrestag, (ed. R. Ansorge, Reimer, Hamburg, 1994) 543–564.

    Google Scholar 

  • F. Steiner and P. Trillenberg, Refined asymptotic expansion of the heat kernel for quantum billiards in unbounded regions, J. Math. Phys. 31 (1990) 1670–1676.

    MathSciNet  MATH  Google Scholar 

  • H.-J. Stöckmann and J. Stein, “Quantum” chaos in billiards studied by microwave absorption, Phys. Rev. Lett. 64 (1990) 2215–2218.

    Google Scholar 

  • A. D. Stone and H. Bruus, Universal fluctuations effects in chaotic quantum dots, Surf. Sci. 305 (1994) 490–494.

    Google Scholar 

  • A. D. Stone, P. A. Mello, K. A. Muttalib, and J. L. Pichard, Random matrix theory and maximum entropy models for disordered conductors, in Mesoscopic Phenomena in Solids, ed. B. L. Al’tshuler et al. (North-Holland, Amsterdam, 1991).

    Google Scholar 

  • M. Stone, Quantum Hall Effect (World Scientific, Singapore, 1992).

    MATH  Google Scholar 

  • M. Stone, H. Wyld and R. Schult, Edge-waves in the quantum Hall effect and quantum dots, Phys. Rev. B45 (1992) 14156.

    Google Scholar 

  • D. Sullivan, Related aspects of positivity: A—potential theory on manifolds, lowest eigenstates, Hausdorff geometry, renormalized Markoff processes… (preprint, 1983).

    Google Scholar 

  • T. Sunada, Euclidean versus non-euclidean aspects in spectral geometry, Prog. Theo. Phys. Suppl. 116 (1994) 235–250.

    MathSciNet  MATH  Google Scholar 

  • A. Szafer and B. Altshuler, Phys. Rev. Lett. 70 (1993) 587–590.

    Google Scholar 

  • D. Szasz, On the K-property of some planar hyperbolic billiards, Comm. Math. Phys. 145 (1992) 595–604.

    MathSciNet  MATH  Google Scholar 

  • K. Takeuchi, On some discrete subgroups of SL(2, R), J. Fac. Sci. Un. Tokyo 16 (1969) 97–100.

    MATH  Google Scholar 

  • K. Takeuchi, A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975) 600–612.

    MathSciNet  MATH  Google Scholar 

  • K. Takeuchi, Arithmetic triangular groups, J. Math. Soc. Japan 29 (1977) 91–106.

    MathSciNet  MATH  Google Scholar 

  • A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. USA 34 (1948) 204–207.

    MathSciNet  MATH  Google Scholar 

  • A. Weil, Algebras with involutions and classical groups, J. Indian Math. Soc. 24 (1960) 589–623.

    MathSciNet  Google Scholar 

  • C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic Press, New York, 1991).

    Google Scholar 

  • N. Whelan, Geometric and diffractive orbits in the scattering from confocal hyperbolae, (preprint, 1994).

    Google Scholar 

  • N. Whelan, Semiclassical quantisation using diffractive orbits, (preprint, 1995).

    Google Scholar 

  • E. P. Wigner, Phys. Rev. 98 (1955) 145.

    MathSciNet  MATH  Google Scholar 

  • E. P. Wigner, Random matrices in physics, SIAM Review 9 (1967) 1–23.

    MATH  Google Scholar 

  • M. Wilkinson, A semiclassical sum rule for matrix elements of classically chaotic systems, J. Phys. A20 (1987) 2415–2423.

    MathSciNet  Google Scholar 

  • H. C. Williams and J. Broere, A computational technique for evaluating L(1, χ) and the class number of a real quadratic field, Math. Comp. 30 (1976) 887–893.

    MathSciNet  MATH  Google Scholar 

  • A. Winkler, Cusp forms and Hecke groups, J. Reine Angew. Math. 386 (1988) 187–204.

    MathSciNet  MATH  Google Scholar 

  • A. Wirzba, Validity of the semiclassical period orbit approximation in the 2-and 3-disk problems, Chaos 2 (1992) 77–83.

    MathSciNet  MATH  Google Scholar 

  • E. Witt, Eine identitat zwischen modulformen zweiten grades, Abh. Sem. Univ. Hamburg 14 (1941) 323–337.

    MathSciNet  Google Scholar 

  • M. Wojtkowski, Principles for the design of billiards with nonvanishing Lyapunov exponents, Comm. Math. Phys. 105 (1986) 391–414.

    MathSciNet  MATH  Google Scholar 

  • S. Wolpert, Disappearance of cusp forms in special families, Ann. Math. 139 (1994) 239–291.

    MathSciNet  MATH  Google Scholar 

  • H. Wu, D. Sprung and J. Martorell, Numerical investigation of isospectral cavities built from triangles, Phys. Rev. E51 (1995) 703–708.

    Google Scholar 

  • D. Zagier, Eisenstein series and the Selberg trace formula, in Automorphic Forms, Representation Theory and Arithmetic (Springer-Verlag, Berlin, 1981) 305–355.

    Google Scholar 

  • D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci., Univ. Tokyo, Sect. 1A, 28 (1981) 415–439.

    Google Scholar 

  • N. Zanon and J. L. Pichard, J. Phys. (Paris) 49 (1988) 907.

    MathSciNet  Google Scholar 

  • S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987) 919–941.

    MathSciNet  MATH  Google Scholar 

  • S. Zelditch, Selberg trace formulae, pseudodifferential operators and geodesic periods of automorphic forms, Duke Math. J. 56 (1988) 295–344.

    MathSciNet  MATH  Google Scholar 

  • K. Zyczkowski, Classical and quantum billiards: integrable, nonintegrable, and pseudo-integrable, Acta Phys. Polon. B23 (1992) 245–270.

    MathSciNet  Google Scholar 

  • A. Zygmund, On Fourier coefficients and transforms of two variables, Studia Math., T.L (1974) 189–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hurt, N.E. (1997). References. In: Quantum Chaos and Mesoscopic Systems. Mathematics and Its Applications, vol 397. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8792-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8792-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4811-0

  • Online ISBN: 978-94-015-8792-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics