Skip to main content

Homotopy Methods in Control System Design and Analysis

  • Chapter
Advances in Optimization and Numerical Analysis

Part of the book series: Mathematics and Its Applications ((MAIA,volume 275))

  • 1396 Accesses

Abstract

Recent technologies have led to stringent control system requirements. This has increased the importance and complexity of the analysis and design of control systems, which often require the solution of systems of nonlinear equations of high order. Some challenging computational problems in control design include model order reduction, high dimensional Riccati equations, fixed-structure optimization, robust analysis and feedback synthesis, sensor/actuator placement, and simultaneous controller/structure design. This paper describes these problems, and the directions in which globally convergent homotopy methods must be extented in order to be applicable to computational problems in control. By way of illustration, a computationally effective probability-one homotopy algorithm is presented for the optimal projection formulation of the reduced order model problem, together with some numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. A. Ficken, The continuation method for functional equations, Comm. Pure Appl. Math., 4 (1951), pp. 435–456.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. H. Meyer, On solving nonlinear equations with a one-parameter operator imbedding, SIAM J. Numerical Analysis, 5 (1968), pp. 739752.

    Google Scholar 

  3. P. Laasonen, An imbedding method of iteration with global convergence, Computing, 5 (1970), pp. 253–258.

    MathSciNet  MATH  Google Scholar 

  4. J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York, 1970.

    MATH  Google Scholar 

  5. E. Wasserstrom, Numerical solutions by the continuation method, SIAM Review, 15 (1973), pp. 89–119.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. H. Avila, The feasibility of continuation methods for nonlinear equations, SIAM J. Numer. Anal., 11 (1974), pp. 102–122.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Wacker, Continuation methods, Academic Press, New York, 1978.

    MATH  Google Scholar 

  8. J. C. Alexander and J. A. Yorke, The homotopy continuation method: Numerically implementable procedures, Trans. Amer. Math. Soc., 242 (1978), pp. 271–284.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. B. Garcia and W. I. Zangwill, Pathways to solutions, fixed points and equilibria, Prentice-Hall, Englewood Cliffs, NJ, 1981.

    MATH  Google Scholar 

  10. B. C. Eaves, F. J. Gould, H. O. Peitgen and M. J. Todd, Homotopy methods and global convergence, Plenum Press, New York, 1983.

    Book  MATH  Google Scholar 

  11. S. L. Richter and R. A. Decarlo, Continuation methods: Theory and applications, IEEE Trans. Circ. Sys, CAS-30 (1983), pp. 347–352.

    Google Scholar 

  12. L. T. Watson, Numerical linear algebra aspects of globally convergent homotopy methods, SIAM Rev., 28 (1986), pp. 529–545.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer-Verlag, Berlin, 1990.

    Book  MATH  Google Scholar 

  14. L. T. Nvatson, S. C. Billups AND A. P. Morgan, Hompack: A suite of codes for globally convergent homotopy algorithms, ACM Trans. Math. Software, 13 (1987), pp. 281–310.

    Article  MathSciNet  Google Scholar 

  15. A. P. Morgan and R. F. Sarraga, A method for computing three surface intersection points in GMSOLID, Tech. Rep. GMR-3964, G. M. Research Lab., Warren, MI, 1982.

    Google Scholar 

  16. W. C. Riieinboldt, Numerical analysis of continuation methods for nonlinear structural problems, Computers Structures, 13 (1981), pp. 103–113.

    Article  MathSciNet  Google Scholar 

  17. L. T. Watson and W. H. Yang, Optimal design by a homotopy method, Applicable Anal., 10 (1980), pp. 275–284.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. T. Watson, S. M. Holler, and M. C. Hansen, Tracking nonlinear equilibrium paths by a. homotopy method, Nonlinear Anal., 7 (1983), pp. 1271–1282.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. T. Watson, M. P. Kamat, and M. H. Reaser, A robust hybrid algorithm for computing multiple equilibrium solutions, Engrg. Comput., 2 (1985), pp. 30–34.

    Google Scholar 

  20. Y. S. Shin, R. T. Haftka, L. T. Watson, AND R. H. Plaut, Tracing structural optima. as a function of available resources by a homotopy method, Comput. Methods Appl. Mech. Engrg., 70 (1988), pp. 151–164.

    MathSciNet  MATH  Google Scholar 

  21. J. D. Turner and H. M. Chun, Optimal distributed control of a flexible spacecraft during a. large-angle maneuver, J. Guidance, Control, Dynamics, 7 (1984), pp. 257–264.

    Article  Google Scholar 

  22. J. P. Dunyak, J. L. Junkins and L. T. Watson, Robust nonlinear least squares estimation using the Chow-Yorke homotopy method, J. Guidance, Control, Dynamics, 7 (1984), pp. 752–755.

    Article  MATH  Google Scholar 

  23. S. Richter and R. Decarlo, A homotopy method for eigenvalue assignment using decentralized state feedback, IEEE Trans. Aut. Control, AC-29 (1984), pp. 148–155.

    Google Scholar 

  24. S. Lefebvre, S. Richter. and R. Decarlo, A continuation algorithm for eigenvalue assignment by decentralized constant-output feedback, Int. J. Control, 41 (1985), pp. 1273–1292.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Mariton and R. Bertrand, A homotopy algorithm for solving coupled Riccati equations, Optim. Control Appl. Meth., 6 (1985), pp. 351–357.

    Article  MathSciNet  Google Scholar 

  26. D. R. Seboi, S. Richter, and R. Decarlo, Feedback gain optimization in decentralized eigenvalue assignment, Automatica, 22 (1986), pp. 433–447.

    Article  Google Scholar 

  27. L. G. Horta, J. N. Juang and J. L. Junkins, A Sequential linear optimization approach for controller design, J. Guidance, Control, Dynamics, 9 (1986), pp. 699–703.

    Article  MATH  Google Scholar 

  28. S. Richter, A homotopy algorithm for solving the optimal projection equations for fixed-order dynamic compensation: Existence, convergence and global optimality, Proc. Amer. Control Conf., Minneapolis, MN, June 1987, pp. 1527–1531.

    Google Scholar 

  29. P. T. Kabamba, R. W. Longman and S. Jian-Guo, A homotopy approach to the feedback stabilization of linear systems, J. Guidance, Control, Dynamics, 10 (1987), pp. 422–432.

    Article  MATH  Google Scholar 

  30. D. Zigié, Homotopy methods for solving the optimal projection equations for the reduced order model problem, M.S. thesis, Dept. of Computer Sci., Virginia Polytechnic Institute and State Univ., Blacksburg, VA, 1991.

    Google Scholar 

  31. M. Jamsiiidi, An overview of the solutions of the algebraic matrix Riccati equation and related problems, Large Scale Systems, i (1980), pp. 167–192.

    Google Scholar 

  32. M. A. Shayman, Geometry of the algebraic Riccati equation, SIAM J. Control Optim., 21 (1983), pp. 375–409.

    Article  MathSciNet  Google Scholar 

  33. I. Gohberg, P. Lancaster, and L. Rodman, On Hermitian solutions of the symmetric algebraic Riccati equation, SIAM J. Control Optim., 24 (1986), pp. 1323–1334.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. E. Potter, Matrix quadratic solutions, SIAM J. Appl. Math., 14 (1966), pp. 496–501.

    MathSciNet  MATH  Google Scholar 

  35. D. L. Kleinman, On an iterative technique for Riccati equation computations, IEEE Trans. Aut. Control, AC-13 (1968), pp. 114–115.

    Google Scholar 

  36. A. J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Aut. Control, AC-24 (1979), pp. 913–921.

    Google Scholar 

  37. P. van Dooren, A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci. Stat. Comp., 2 (1981), pp. 121–135.

    Google Scholar 

  38. W. F. Arnold and A. J. Laub, Generalized eigenproblem algorithms and software for algebraic Riccati equations, Proc. IEEE, 72 (1984), pp. 1746–1754.

    Article  Google Scholar 

  39. T. Pappas, A. J. Laub and N. R. Sandell, JR., On the numerical solution of the discrete-time algebraic Riccati equation, IEEE Trans. Aut. Control, AC-25 (1980), pp. 631–641.

    Google Scholar 

  40. A. J. Laub, Numerical linear algebra. aspects of control design computations, IEEE Trans. Aut. Control, AC-30 (1985), pp. 97–108.

    Google Scholar 

  41. J. Casti and L. Ljung, Some new analytic and computational results for operator Riccati equations, SIAM J. Control Optim., 13 (1975), pp. 817–826.

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Kailath, Some Chandrasekha.r-type algorithms for quadratic regula. tors, Proc. IEEE Conf. Decis. Control, New Orleans, LA, 1972, pp. 219223.

    Google Scholar 

  43. K. Ito and R. K. Powers, Chandrasekhar equations for infinite dimensional systems, SIAM J. Control Optim., 25 (1987), pp. 596–611.

    Article  MATH  Google Scholar 

  44. R. Byers, Solving the algebraic Riccati equation with the matrix sign function, preprint.

    Google Scholar 

  45. S. Richter, Reduced-order control design via the optimal projection approach: A homotopy algorithm for global optimality, Proc. Sixth VPISU Symp. Dyn. Control Large Str., Blacksburg, VA, June 1987.

    Google Scholar 

  46. W. S. Levine and M. Athans, On the determination of the optimal constant output feedback gains for linear multiva.riable systems, IEEE Trans. Aut. Control, AC-15 (1970), pp. 44–48.

    Google Scholar 

  47. W. S. Levine, T. L. Johnson and M. Athans, Optimal limited state variable feedback controllers for linear systems, IEEE Trans. Aut. Control, AC-16 (1971), pp. 785–793.

    Google Scholar 

  48. N. R. Sandell, JR., P. Varaiya, M. Athans AND M. G. Safanov, Survey of decentralized control methods for large scale systems, IEEE Trans. Aut. Control, AC-23 (1978), pp. 108–128.

    Google Scholar 

  49. C. J. Wenk and C. H. Knapp, Parameter optimization in linear systems with arbitrarily constrained controller structure, IEEE Trans. Aut. Control, AC-25 (1980), pp. 496–500.

    Google Scholar 

  50. D. P. Looze and N. R. Sandell, JR., Gradient calculations for linear quadratic fixed-control structure problems, IEEE Trans. Aut. Control, AC-25 (1980), pp. 285–288.

    Google Scholar 

  51. P. T. Kasamba and R. W. Longman, An integrated approach to reduced-order control theory, Optimal Control Appl. Methods, 4 (1983), pp. 405–415.

    Article  MathSciNet  Google Scholar 

  52. J. R. Broussard and N. Halyo, Active flutter control using discrete optimal constrained dynamic compensators, Proc. 1983 Amer. Control Conf., San Francisco, CA, 1983.

    Google Scholar 

  53. D. C. Hyland and D. S. Bernstein, The optimal projection equations for fixed-order dynamic compensation, IEEE Trans. Aut. Control, AC-29 (1984), pp. 1034–1037.

    Google Scholar 

  54. D. D. Moerder and A. J. CALISE, Convergence of a numerical algorithm for calculating optimal output feedback gains, IEEE Trans. Aut. Control, AC-30 (1985), pp. 900–903.

    Google Scholar 

  55. U. L. LY, A. Bryson, and R. H. Cannon, Design of low-order compensators using parameter optimization, Automatica, 21 (1985), pp. 315–318.

    Article  MATH  Google Scholar 

  56. D. S. Bernstein and D. C. Hyland, The optimal projection equations for finite-dimensional fixed-order dynamic compensation of infinite-dimensional systems, SIAM J. Control Optim., 24 (1986), pp. 122–151.

    Article  MATH  Google Scholar 

  57. P. M. Makila and H. T. Toivonen, Computational methods for parametric LQ problems—a survey, IEEE Trans. Aut. Control, AC-32 (1987), pp. 658–671.

    Google Scholar 

  58. V. Mukhopadhyay, Digital robust active control law synthesis for large order systems using constrained optimization, Proc. AIAA Guid. Nay. Control Conf., pp. 1414–1423, Monterey, CA, August 1987.

    Google Scholar 

  59. P. T. Kabamba, R. W. Longman and S. Jian-Guo, A homotopy approach to the feedback stabilization of linear systems, J. Guidance, Control, Dynamics, 10 (1987), pp. 422–432.

    Article  MATH  Google Scholar 

  60. S. RICHTER, A homotopy algorithm for solving the optimal projection equations for fixed-order dynamic compensation: Existence, convergence and global optimality, Proc. Amer. Control Conf., Minneapolis, MN, June 1987, pp. 1527–1531.

    Google Scholar 

  61. Y. Lw and B. D. O. Anderson, Controller reduction via stable factorization and balancing, Int. J. Control, 44 (1986), pp. 507–531.

    Article  Google Scholar 

  62. N. G. Lloyd, Degree Theory, Cambridge University Press, London, 1978.

    MATH  Google Scholar 

  63. R. R. E. DE Gaston and M. G. Safanov, A homotopy method for nonconserva.tive stability robustness analysis, Proc. 24th IEEE Conf. Decis. Control, Fort Lauderdale, FL, 1985, pp. 1294–1301.

    Google Scholar 

  64. J. C. Doyle and G. Stein, Multiva.riable feedback design, IEEE Trans. Aut. Control, AC-26 (1981), pp. 4–16.

    Google Scholar 

  65. M. G. Safanov, A. J. Laub and G. L. Hartman, Feedback properties of multivariable systems: the role and use of the return difference matrix, IEEE Trans. Aut. Control, AC-26 (1981), pp. 47–65.

    Google Scholar 

  66. N. A. Lehtomaki, N. R. Sandell, JR. and M. Athans, Robustness results in linear-quadratic Gaussian based multiva.riahle control designs, IEEE Trans. Aut. Control, AC-26 (1981), pp. 75–93.

    Google Scholar 

  67. J. Doyle, Analysis of feedback systems with structured uncertainties, IEE Proc., Pt. D., 129 (1982), pp. 242–250.

    MathSciNet  Google Scholar 

  68. J. Doyle, J. E. Wall and G. Stein, Performance and robustness analysis for structured uncertainty, Proc. 21st IEEE Conf. Decis. Control, Orlando, FL, 1982, pp. 629–636.

    Google Scholar 

  69. J. C. Doyle, Structured uncertainty in control system design, Proc. 24th IEEE Conf. Decis. Control, Fort Lauderdale, FL, 1985, pp. 260265.

    Google Scholar 

  70. M. K. H. Fan and A. L. Tits, Characterization and efficient computation of the structured singular value, IEEE Trans. Aut. Control, AC-31 (1986), pp. 734–743.

    Google Scholar 

  71. M. G. Safanov, Exact calculation of the structured-singular-value stability margin, Proc. 23rd IEEE Conf. Decis. Control, Las Vegas, NV, 1984, pp. 1224–1225.

    Google Scholar 

  72. S. S. L. Chang and T. K. C. Peng, Adaptive guaranteed cost control of systems with uncertain parameters, IEEE Trans. Aut. Control, AC-17 (1972), pp. 474–483.

    Google Scholar 

  73. E. Noldus, Design of robust state feedback laws, Int. J. Control, 35 (1982), pp. 935–944.

    Article  MathSciNet  MATH  Google Scholar 

  74. I. R. Peterson and C. V. Hollot, A Riccati equation approach to the stabilization of uncertain linear systems, Automatica, 22 (1986), pp. 397–411.

    Article  Google Scholar 

  75. O. I. Kosmidou and R. Bertrand, Robust-controller design for systems with large parameter variations, Int. J. Control, 45 (1987), pp. 927938.

    Google Scholar 

  76. D. S. Bernstein and D. C. Hyland, The optimal projection/maximuni entropy approach to designing low-order, robust controllers for flexible structures, Proc. 24th IEEE Conf. Decis. Control, Fort Lauderdale, FL, 1985, pp. 745–752.

    Google Scholar 

  77. D. S. Bernstein and S. W. Greeley, Robust controller synthesis using the maximum entropy design equations, IEEE Trans. Aut. Control, AC-31 (1986), pp. 362–364.

    Google Scholar 

  78. D. S. Bernstein, Robust static and dynamic output-feedback stabilization: deterministic and stochastic perspectives, IEEE Trans. Aut. Control, AC-32 (1987), pp. 1076–1084.

    Google Scholar 

  79. I. R. Petersen, Disturbance attenuation and H“° optimization: a design method based on the algebraic Riccati equation, IEEE Trans. Aut. Control, AC-32 (1987), pp. 427–429.

    Google Scholar 

  80. P. P. Khargonekar, I. R. Petersen and K. Zhou, Robust stabilization of uncertain systems and Hoo optimal control, preprint.

    Google Scholar 

  81. D. S. Bernstein and W. M. Haddad, LQG control with an H„ performance hound, preprint.

    Google Scholar 

  82. M. Mariton and R. Bertrand, A homotopy algorithm for solving coupled Riccati equations, Optimal Control Appl. Meth., 6 (1985), pp. 351–357.

    Article  MathSciNet  Google Scholar 

  83. S. Kumar and J. H. Seinfeld, Optimal location of measurements for distributed parameter estimation, IEEE Trans. Aut. Control, AC-23 (1978), pp. 690–698.

    Google Scholar 

  84. M. I. J. Chang and T. T. Soong, Optimal controller placement in modal control of complex systems, J. Math. Anal. Appl., 75 (1980), pp. 340–358.

    Article  MathSciNet  MATH  Google Scholar 

  85. P. C. Hughes and R. E. Skelton, Controllability and observability for flexible spacecraft, J. Guidance, Control, Dynamics, 3 (1980), pp. 452–459.

    Article  MATH  Google Scholar 

  86. S. Omatu and J. H. Seinfeld, Optimization of sensor and actuator locations in a distributed parameter system, J. Franklin Inst., 315 (1983), pp. 407–421.

    Article  MathSciNet  MATH  Google Scholar 

  87. W. E. Vandervelde and C. R. Carignon, Number and placement of control system components considering possible failures, J. Guidance, Control, Dynamics, 7 (1984), pp. 703–709.

    Article  Google Scholar 

  88. C. S. Kubrusly and H. Malebranche, Sensors and controllers location in distributed systems—a survey, Automatica, 21 (1985), pp. 117128.

    Google Scholar 

  89. A. L. Hale, R. J. Lisowski and W. E. Dahl, Optimal simultaneous structural and control design of maneuvering flexible spacecraft, J. Guidance, Control, Dynamics, 8 (1985), pp. 86–93.

    Article  Google Scholar 

  90. D. S. Bodden and J. L. Junkins, Eigenvalue optimization algorithms for structure/controller design iterations, J. Guidance, Control, Dynamics, 8 (1985), pp. 697–706.

    Article  MATH  Google Scholar 

  91. D. F. Miller and J. Shim, Gradient-based combined structural and control optimization, J. Guidance, Control, Dynamics, 10 (1987), pp. 291–298.

    Article  MATH  Google Scholar 

  92. D. C. Hyland and D. S. Bernstein, The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton, and Moore, IEEE Trans. Aut. Control, AC-30 (1985), pp. 1201–1211.

    Google Scholar 

  93. D. S. Bernstein and D. C. Hyland, The optimal projection equations for reduced-order state estimation, IEEE Trans. Aut. C.ntrol, AC-30 (1985), pp. 583–585.

    Google Scholar 

  94. S. L. Campbell and C. D. Meyer, JR., Generalized Inverses of Linear Transformations, Pitman, London, 1979, Ch. 7, pp. 120–127.

    Google Scholar 

  95. L. T. Watson, Globally convergent homotopy methods: A tutorial, Appl. Math. Comput., 31BK (1989), pp. 369–396.

    Google Scholar 

  96. L. T. Watson, Globally convergent homotopy algorithms for nonlinear systems of equations, Nonlinear Dynamics, 1 (1990), pp. 143–191.

    Article  Google Scholar 

  97. S. Smale, A convergent process of price adjustment and global Newton methods, J. Math. Econ., 3 (1976), pp. 107–120.

    Article  MathSciNet  MATH  Google Scholar 

  98. J. T. Spanos, M. H. Milman and D. L. Mingori, Optimal model reduction and frequency-weighted extension, AIAA paper number AIAA90–3345—CP, 1990, pp. 271–284.

    Google Scholar 

  99. E. G. Collins, JR., D. J. Phillips and D. C. Hyland, Robust decentralized control laws for the ACES structure, Contr. Sys. Mag., April (1991), pp. 62–70.

    Google Scholar 

  100. D. Žigić, L. T. Watson, E. G. Collins, JR., and D. S. Bernstein, Homotopy methods for solving the optimal projection equations for the H2 reduced order model problem, Internat. J. Control, 56 (1992), pp. 173–191.

    Article  MATH  Google Scholar 

  101. D. Žigić, L. T. Watson, E. G. Collins, JR., and D. S. Bernstein, Homotopy approaches to the H2 reduced order model problem, J. Math. Systems, Estimation, Control, 3 (1993), pp. 173–205.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Watson, L.T., Richter, S., Žigić, D. (1994). Homotopy Methods in Control System Design and Analysis. In: Gomez, S., Hennart, JP. (eds) Advances in Optimization and Numerical Analysis. Mathematics and Its Applications, vol 275. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8330-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8330-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4358-0

  • Online ISBN: 978-94-015-8330-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics