Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 391))

  • 235 Accesses

Abstract

The solar magnetic field on a surface of 2.5 solar radii, known as the source surface, can be approximated by a dipole field. This dipolar field rotates by 180° meridionally throughout a sunspot cycle, although the polar unipolar fields on the photosphere do not show such a shift across the equator. It is of interest to assume that the solar source surface corresponds to the surface of the magnetized planets and that the photosphere corresponds to the core surface. An advantage of the solar situation is that one can directly observe the photospheric magnetic fields which correspond to the magnetic fields of the core surface. We examine why the dipolar field on the source surface is inclined with respect to the rotation axis and why the inclination angle changes from 0° to 180° (or 180° to 0°) during a sunspot cycle. We assume that the main dipole is axially aligned with the rotation axis, because the unipolar fields in the polar regions do not shift across the equator. It can be shown that the inclination and its change arise from the growth and decay of a few dipolar sources oriented in an east-west direction near the equator. The combined field of the axially aligned dipole and the equatorial dipoles provides an inclined dipole on the source surface. The equatorial dipoles are identified as large-scale weak dipolar fields which contain active regions. The rotation of the dipole on the source surface arises from a relative change of strength of the equatorial dipoles and the axial dipole. On the basis of the above study of the solar situation, we suggest that the inclination and eccentricity of the dipole axis of the magnetized planets (including the earth) arise from the growth and decay of equatorial dipoles near the core surface. The reversal of the earth’s dipole field may be explained in a way similar to the reversal of the dipole field on the source surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, D.W. (1958) Reversals of the earth’s magnetic field. Nature 181, 469.

    Article  Google Scholar 

  • Bullard, E.C. and H. Gellman (1954) Homogeneous dynamos and terrestrial magnetism. Phil. Trans. Roy. Soc. A. 247, 213.

    Article  Google Scholar 

  • Busse, F.H. (1978) Magnetohydrodynamics of the earth’s dynamo. Ann. Rev. Fluid Mech. 10, 435.

    Article  Google Scholar 

  • Chapman, S. and J. Bartels (1940) Geomagnetism, II, Oxford Univ. Press, Oxford.

    Google Scholar 

  • Cox, A. (1970) Geomagnetic reversals. Science 163, 237.

    Article  Google Scholar 

  • Dodson, R.F., I.R. Dunn, M.D. Fuller, I. Williams, H. Ito, V.A. Schmidt and Y.-M. Wu (1978) Paleomagnetic record of a late Tertiary field reversal. Geophys. J.R. Astr. Soc. 53, 373.

    Article  Google Scholar 

  • Elsasser, W.M. (1946) Induction effects in terrestrial magnetism. Phys. Rev. 69, 106 and 70, 202.

    Article  Google Scholar 

  • Fuller, M.D., I. Williams and K.A. Hoffman (1979) Paleomagnetic records of geomagnetic field reversals and the morphology of the transitional fields. Rev. Geophys. Space Phys. 17, 179.

    Article  Google Scholar 

  • Gubbins, D. (1984) The earth’s magnetic field. Contemp. Phys. 25, 269.

    Article  Google Scholar 

  • Hoeksema, J.T. and P.H. Scherrer (1984) Harmonic analysis of the solar magnetic field, Proceedings of the 4th European Meeting on Solar Physics, The Hydromagnetics of the Sun, Eur. Space Agency Spec. Publ., ESA-SP-220, 269.

    Google Scholar 

  • Hoeksema, J.T., J.M. Wilcox and P.H. Scherrer (1982) Structure of the heliospheric current sheet in the early portion of sunspot cycle 21. J. Geophys. Res. 87, 10331.

    Article  Google Scholar 

  • Hoeksema, J.T., J.M. Wilcox and P.H. Scherrer (1983) The structure of the heliospheric current sheet. J. Geophys. Res. 88, 9910.

    Article  Google Scholar 

  • Levine, R.H. (1977) Large scale solar magnetic fields and coronal notes. In Coronal Holes and High Speed Wind Stream, edited by J.B. Zirker, p. 103, Colorado Associated University Press, Boulder, Colo.

    Google Scholar 

  • Levy, E.H. (1972) Kinematic reversal schemes for the geomagnetic dipole. Astrophys. J. 171, 635.

    Article  Google Scholar 

  • McFadden, P.C. and R.T. Merrill (1984) Lower mantle convection and geomagnetism. J. Geophys. Res. 89, 3354.

    Article  Google Scholar 

  • Merrill, R.T. and M.W. McElhinny (1983) The Earth’s Magnetic Field, Academic Press.

    Google Scholar 

  • Moffatt, H.K. (1978) Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Ness, N.F., M.H. Acuña, K.W. Behannon, L.F. Burlaga, J.E.P. Connerney, R.P. Lepping and F.M. Neubauer (1986) Magnetic fields at Uranus. Science 233, 85.

    Article  Google Scholar 

  • Ness, N.F., M.H. Acuña, L.F. Burlaga, J.E.P. Connerney, R.P. Lepping and F.M. Neubauer (1989) Magnetic fields at Neptune. Science 246, 1473.

    Article  Google Scholar 

  • Prevot, M., E.A. Mankinen, R.S. Coe and C.S. Grommé (1985) The Steens Mountain (Oregon) polarity transition 2, Field intensity variations and discussion of reversal models. J. Geophys. Res. 90, 10417.

    Article  Google Scholar 

  • Rikitake, T. (1958) Oscillations of a system of disc dynamos. Proc. Camb. Phil. Soc. 54, 89.

    Article  Google Scholar 

  • Rikitake, T. (1966) Electromagnetism and the Earth’s Interior, Elsevier, Amsterdam.

    Google Scholar 

  • Roberts, N. and J. Shaw (1984) The relationship between the magnitude and direction of the I geomagnetic field during the Late Tertiary in Eastern Iceland. Geophys. J. R. Astr. Soc. 76. 637.

    Article  Google Scholar 

  • Roberts, N. and J.D.A. Piper (1989) A description of the behavior of the earth’s magnetic field. In Geomagnetism, 3, ed. by J.A. Jacobs, p. 163, Academic Press Ltd., London.

    Google Scholar 

  • Saito, T. and S .-I. Akasofu (1987) On the reversal of the dipolar field of the Sun and its possible implication for the reversal of the Earth’s field. J. Geophys. Res. 92, 1255.

    Article  Google Scholar 

  • Saito, T., T. Oki, C. Olmsted and S.-I. Akasofu (1989) A representation of the magnetic neutral line on the solar source surface in terms of the sun’s axial dipole at the center and two equatorial dipoles in the photosphere. J. Geophys. Res. 94, 14993.

    Article  Google Scholar 

  • Saito, T., Y. Kozuka, T. Oki and S.-I. Akasofu (1991) The source surface and photospheric magnetic field models. J. Geophys. Res. 90, 3807.

    Article  Google Scholar 

  • Shatten, K.H., J.M. Wilcox and N.F. Ness (1969) A model of coronal and interplanetary magnetic fields. Sol. Phys. 9, 422.

    Google Scholar 

  • Wang, Y.-M., A.G. Nash and N.R. Sheeley, Jr. (1989) Magneticflux transport on the sun. Science 245, 712.

    Article  Google Scholar 

  • Williams, LS. and M. Fuller (1981) Zonal harmonic models of reversal transition field. J. Geophys. Res. 86, 11657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Akasofu, SI., Saito, T. (1993). Reversals of the Solar Source Surface Magnetic Field and of the Planets. In: Stone, D.B., Runcorn, S.K. (eds) Flow and Creep in the Solar System: Observations, Modeling and Theory. NATO ASI Series, vol 391. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8206-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8206-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4245-3

  • Online ISBN: 978-94-015-8206-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics