Skip to main content

The role of macrophage-derived growth factors in tissue repair

  • Chapter
Mononuclear Phagocytes

Abstract

Macrophages, which are required for wound healing (1, 2), are the central player in the repair of tissue injury. When macrophages are eliminated by anti-leukocyte serum injected locally, and monocyte production is prevented by injection of glucocorticoids, wound healing proceeds very slowly. It is likely that macrophages participate in most processes in wound healing, from acute and chronic inflammation through recruitment of new blood vessels (angiogenesis), proliferation of endothelial and mesenchymal cells and regulation of extracellular matrix synthesis and degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leibovich SJ, Ross R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 1975, 78:71–100.

    PubMed  CAS  Google Scholar 

  2. Rappolee DA, Werb Z. Macrophage secretions: a functional perspective. Bull Inst Pasteur 1989, 87:361–394.

    CAS  Google Scholar 

  3. Lin H-S, Gordon S. Secretion of plasminogen activator by bone marrow-derived mononuclear phagocytes and its enhancement by colony-stimulating factor. J Exp Med 1979, 150:231–245.

    Article  PubMed  CAS  Google Scholar 

  4. Postlethwaite AE, Lachman LB, Mainardi CL, Kang AH. Interleukin 1 stimulation of collagenase production by cultured fibroblasts. J Exp Med 1983, 157:801–806.

    Article  PubMed  CAS  Google Scholar 

  5. Matrisian LM, Glaichenhaus N, Gesnel M-C, Breathnach R. Epidermal growth factor and oncogenes induce transcription of the same cellular mRNA in rat fibroblasts. EMBO J 1985, 4:1435–1440.

    PubMed  CAS  Google Scholar 

  6. Edwards DR, Murphy G, Reynolds JJ, Whitham SE, Docherty AJ, Angel P, Heath JK. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J 1987, 6:1899–1904.

    PubMed  CAS  Google Scholar 

  7. Schnyder J, Payne T, Dinarello CA. Human monocyte or recombinant interleukin l’s are specific for the secretion of a metalloproteinase from chondrocytes. J Immunol 1987, 138:496–503.

    PubMed  CAS  Google Scholar 

  8. Dinarello CA. Interleukin-1 and its biologically related cytokines. Adv Immunol 1989, 44:153–205.

    Article  PubMed  CAS  Google Scholar 

  9. Werb Z, Alexander CA. Proteinases and matrix degradation. In: Textbook of Rheumatology. Kelley WN, Harris ED Jr, Ruddy S, Sledge CB, Eds. WB Saunders, Philadelphia, in press.

    Google Scholar 

  10. Rappolee DA, Mark D, Banda MJ, Werb Z. Wound macrophages express TGF-α and other growth factors in vivo: analysis by mRNA phenotyping. Science 1988, 241:708–712.

    Article  PubMed  CAS  Google Scholar 

  11. Rappolee DA, Werb Z. mRNA phenotyping for studying gene expression in small numbers of cells: Platelet-derived growth factor and other growth factors in woundderived macrophages. Am J Respir Cell Mol Biol 1990, 2:3–10.

    PubMed  CAS  Google Scholar 

  12. Weisbart RH, Kacena A, Schuh A, Golde DW. GM-CSF induces human neutrophil IgA-mediated phagocytosis by an IgA Fc receptor activation mechanism. Nature 1988, 332:647–648.

    Article  PubMed  CAS  Google Scholar 

  13. Polverini PJ, Cotran RS, Gimbrone MA Jr, Unanue ER. Activated macrophages induce vascular proliferation. Nature 1977, 269:804–806.

    Article  PubMed  CAS  Google Scholar 

  14. Greenburg GB, Hunt TK. The proliferative response in vitro of vascular endothelial and smooth muscle cells exposed to wound fluids and macrophages. J Cell Physiol 1978, 97:353–360.

    Article  PubMed  CAS  Google Scholar 

  15. Banda MJ, Knighton DR, Hunt TK, Werb Z. Isolation of a nonmitogenic angiogenesis factor from wound fluid. Proc Nat Acad Sci USA 1982, 79:7773–7777.

    Article  PubMed  CAS  Google Scholar 

  16. Koch AE, Polverini PJ, Leibovich SJ. Stimulation of neovascularization by human rheumatoid synovial tissue macrophages. Arth Rheum 1986, 29:471–479.

    Article  CAS  Google Scholar 

  17. Raines EW, Dower SK, Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 1989, 243:393–396.

    Article  PubMed  CAS  Google Scholar 

  18. Rappolee DA, Werb Z. Macrophage-derived growth factors. In: Macrophages and Macrophage Activation. Russell SW, Gordon S, Eds. Springer-Verlag, Berlin, in press.

    Google Scholar 

  19. Folkman J. Angiogenesis: What makes blood vessels grow? Int U Physiol Sci/Am Physiol Soc 1986, 1:199–202.

    CAS  Google Scholar 

  20. Rappolee DA, Werb Z. Secretory products of phagocytes. Curr Opin Immunol 1988, 1:47–55.

    Article  PubMed  CAS  Google Scholar 

  21. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanja V, Kehrl JH, Fauci AS. Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Nat Acad Sci USA 1986, 83:4167–4171.

    Article  PubMed  CAS  Google Scholar 

  22. Heimark RL, Twardzik DR, Schwartz SM. Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science 1986, 233:1078–1080.

    Article  PubMed  CAS  Google Scholar 

  23. Massague J. The TGF-β family of growth and differentiation factors. Cell 1987, 49:437–438.

    Article  PubMed  CAS  Google Scholar 

  24. Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-a. Nature 1987, 329:630–632.

    Article  PubMed  CAS  Google Scholar 

  25. Fräter-Schröder M, Risau W, Hallmann R, Gautschi P, Bhlen P. Tumor necrosis factor type a, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Nat Acad Sci USA 1987, 84:5277–5281.

    Article  PubMed  Google Scholar 

  26. Gerlach H, Lieberman H, Bach R, Godman G, Brett J, Stern D. Enhanced responsiveness of endothelium in the growing/motile state to tumor necrosis factor/cachectin. J Exp Med 1989, 170:913–931 (Published erratum appears in J Exp Med 1989, 170:1793).

    Article  PubMed  CAS  Google Scholar 

  27. Thomas KA, Rios-Candelore M, Gimenez-Gallego G, DiSalvo J, Bennett C, Rodkey J, Fitzpatrick S. Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proc Nat Acad Sci USA 1985, 82:6409–6413.

    Article  PubMed  CAS  Google Scholar 

  28. Schreiber AB, Winkler ME, Derynck R, Transforming growth factor-a: a more potent angiogenic mediator than epidermal growth factor. Science 1986, 232:1250–1253.

    Article  PubMed  CAS  Google Scholar 

  29. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 1989, 58:575–606.

    Article  PubMed  CAS  Google Scholar 

  30. Bussolino F, Wang JM, Defilippi P, Turrini F, Sanavio F, Edgell C-JS, Aglietta M, Arese P, Mantovani A. Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 1989, 337:471–473.

    Article  PubMed  CAS  Google Scholar 

  31. Knighton DR, Hunt TK, Scheuenstuhl H, Halliday BJ, Werb Z, Banda MJ. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 1983, 221:1283–1285.

    Article  PubMed  CAS  Google Scholar 

  32. Maione TE, Gray GS, Petro J, Hunt AJ, Donner AL, Bauer SI, Carson HF, Sharpe RJ. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990, 247:77–79.

    Article  PubMed  CAS  Google Scholar 

  33. Schultz GS, White M, Mitchell R, Brown G, Lynch J, Twardzik DR, Todaro GJ. Epithelial wound healing enhanced by transforming growth factor-α and vaccinia growth factor. Science 1987, 235:350–352.

    Article  PubMed  CAS  Google Scholar 

  34. Perry VH, Brown MC, Gordon S. The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med 1987, 165:1218–1223.

    Article  PubMed  CAS  Google Scholar 

  35. Scheidt P, Waehneldt TV, Beuche W, Friede RL. Changes of myelin proteins during Wallerian degeneration in situ and in millipore diffusion chambers preventing active phagocytosis. Brain Res 1986, 379:380– 384.

    Article  PubMed  CAS  Google Scholar 

  36. Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, Shooter E, Thoenen H. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci USA 1987, 84:8735–8739.

    Article  PubMed  CAS  Google Scholar 

  37. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988, 240:622–630.

    Article  PubMed  CAS  Google Scholar 

  38. Bauer J, Bauer TM, Kalb T, Taga T, Lengyel G, Hirano T, Kishimoto T, Acs G, Mayer L, Gerok W. Regulation of interleukin 6 receptor expression in human monocytes and monocyte-derived macrophages. J Exp Med 1989, 170:1537–1549.

    Article  PubMed  CAS  Google Scholar 

  39. Boyles JK, Zoellner CD, Anderson LJ, Kosik LM, Pitas RE, Weisgraber KH, Hui DY, Mahley RW, GebickeHaerter PJ, Ignatius MJ, Shooter EM. A role for apolipoprotein E, apolipoprotein A-1, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. J Clin Invest 1989, 83:1015–1031.

    Article  PubMed  CAS  Google Scholar 

  40. Werb Z, Chin JR. Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes. J Cell Biol 1983, 97:1113–1118.

    Article  PubMed  CAS  Google Scholar 

  41. Ignatius MJ, Shooter EM, Pitas RE, Mahley RW. Lipoprotein uptake by neuronal growth cones in vitro. Science 1987, 236:959–962.

    Article  PubMed  CAS  Google Scholar 

  42. Lindholm D, Heumann R, Meyer M, Thoenen H. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 1987, 330:658–659.

    Article  PubMed  CAS  Google Scholar 

  43. Lindholm D, Heumann R, Hengerer B, Thoenen H. Interleukin 1 increases stability and transcription of mRNA encoding nerve growth factor in cultured rat fibroblasts. J Biol Chem 1988, 263:16348–16351.

    PubMed  CAS  Google Scholar 

  44. Underwood JL, Rappolee DA, Flannery ML, Werb Z. A role for the tissue inhibitor of nnetalloproteinases (TIMP) in regeneration of peripheral nerve (abstract). J Cell Biol, in press.

    Google Scholar 

  45. Thomas PK, Jones DG. The cellular response to nerve injury. 2. Regeneration of the perineurium after nerve section. J Anat 1967, 101:45–55.

    PubMed  CAS  Google Scholar 

  46. Moses MA, Sudhalter V, Langer R. Identification of an inhibitor of neovascularization from cartilage. Science 1990, 248:1408.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Werb, Z., Underwood, J.L., Rappolee, D.A. (1992). The role of macrophage-derived growth factors in tissue repair. In: van Furth, R. (eds) Mononuclear Phagocytes. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8070-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8070-0_54

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4171-5

  • Online ISBN: 978-94-015-8070-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics