Skip to main content

Enzymes

  • Chapter
Basic Food Chemistry
  • 743 Accesses

Abstract

Enzymes are proteins with the special ability to catalyze specific chemical reactions in living matter. Although they may undergo change during the catalysis, they are unchanged at the end of the reaction. Enzymes are made in living cells, but can act in vitro, that is, apart from living material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • BELL, R. M., and KOSHLAND, D. E., Jr. 1971. Covalent enzyme-substrate intermediates. Science 172, 1253–1256.

    Article  Google Scholar 

  • BERGMEYER, H. U. 1974. Methods of Enzymatic Analysis, Vols. I, II, III, and IV. Academic Press, New York

    Google Scholar 

  • BERGMEYER, H. U., and GAWEHN, K. (Editors). 1978. Principles of Enzymatic Analysis. Verlag Chemie. Weinheim.

    Google Scholar 

  • BIRD, R., and HOPKINS, R. H. 1954. The action of some α-amylases on amylose. Biochem. J. 56, 86–99.

    Google Scholar 

  • BOYER, P. D. 1970–1981. The Enzymes. 3rd. Edition. Vols. 1–14. Academic Press, New York.

    Google Scholar 

  • BUCHNER, E. 1897. Alcoholic fermentation without yeast cells. A preliminary report. Ber. 30, 117–124, (German)

    Article  Google Scholar 

  • BUCHNER, E., and RAPP, R. 1897. Alcoholic fermentation without yeast cells. Ber. 30, 2668–2678. (German)

    Article  Google Scholar 

  • CHANCE, B. 1951. Enzyme-substrate compounds. Adv. Enzymol. 12, 153–190.

    Google Scholar 

  • COLOWICK, S. P., and KAPLAN, N. O. (Editors). 1955–1982. Methods in Enzymology. Vols. 1–84. Academic Press, New York.

    Google Scholar 

  • CROOK, E. M., and MORGAN, E. J. 1944. The reduction of dehydroascorbic acid in plant extracts. Biochem. J. 28, 10–15.

    Google Scholar 

  • DIXON, M., and WEBB, E. C. 1964. Enzymes. 2nd ed. Longmans, Green, New York.

    Google Scholar 

  • DOUZON, P. 1977. Enzymology at subzero temperatures. Adv. Enzymol. 45, 157–272.

    Google Scholar 

  • ENDO, A. 1964. Pectolytic enzymes of molds X. Purification and properties of endo-polygalacturonase III. Agric. Biol. Chem. 28, 551–558.

    Article  Google Scholar 

  • ENZYME NOMENCLATURE. 1978. Enzyme Nomenclature Recommendations. International Union of Biochemistry. Academic Press, New York.

    Google Scholar 

  • ERICKSSON, C. E., and SVENSSON, S. G. 1970. Lipoxygenase from peas, purification and properties of the enzyme. Biochim. Biophys. Acta 198, 449–459.

    Google Scholar 

  • EVERSE, J., and KAPLAN, N. O. 1973. Lactate hydrogenases: structure and function. Adv. Enzymol. 37, 61–133.

    Google Scholar 

  • FISCHER, E. 1894. Influence of configuration on the action of enzymes. Ber. Deut. Chem. Ges. 27, 2985–2993.

    Article  Google Scholar 

  • FRUTON, J. S. 1970. Specificity and mechanism of pepsin action. Adv. Enzymol. 33, 401–443.

    Google Scholar 

  • GUTFREUND, H. 1965. An Introduction to the Study of Enzymes. Blackwell, Oxford.

    Google Scholar 

  • GUTFREUND, H. 1971. Transients and relaxation kinetics of enzyme reactions. Annu. Rev. Biochem. 40, 315–344.

    Article  Google Scholar 

  • GUTFREUND, H. 1972. Enzymes: Physical Principles. John Wiley (Interscience), New York.

    Google Scholar 

  • HALDANE, J. B. S. 1965. The Enzymes. MIT Press. Cambridge, Massachusetts.

    Google Scholar 

  • HASCHEMEYER, R. H., and de HARVEN, E. 1974. Electron microscopy of enzymes. Annu. Rev. Biochem. 43, 279–301.

    Article  Google Scholar 

  • HEWITT, E. J., MACKAY, D. A. M., KONIGSBACHER, K., and HASSELSTROM, T. 1956. The role of enzymes in food flavors. Food Technol. 10, 487–489.

    Google Scholar 

  • HULME, A. C. Editor. 1970–1971. The Biochemistry of Fruits and Their Products, Vols. 1 & 2. Academic Press, New York.

    Google Scholar 

  • JENCKS, W. P. 1963. Mechanism of enzyme action. Annu. Rev. Biochem. 32, 639–676.

    Article  Google Scholar 

  • KIRSCH, J. F. 1973. Mechanism of enzyme action. Annu. Rev. Biochem. 42, 205–234.

    Article  Google Scholar 

  • KOSHLAND, D. E., Jr. 1973. Protein shape and biological control. Sci. Am. 229(4), 52–64.

    Article  Google Scholar 

  • KOSHLAND, D. E., Jr., and NEET, K. E. 1968. The catalytic and regulatory properties of enzymes. Annu. Rev. Biochem. 37, 359–410.

    Article  Google Scholar 

  • KUNTZ, M., and NORTHROP, J. H. 1934. Inactivation of crystalline trypsin. J. Gen. Physiol. 17, 591–615.

    Article  Google Scholar 

  • LAIDLER, K. J. 1973. The Chemical Kinetics of Enzyme Action. 2nd Ed. Oxford University Press, New York.

    Google Scholar 

  • LASKOWSKI, M., Jr., and KATO, I. 1980. Protein inhibitors of proteinases. Annu. Rev. Biochem. 49, 593–626.

    Article  Google Scholar 

  • LEE, F. A. 1958. The effect of blanching on the carbonyl content of the crude lipid during the storage of frozen peas. Food Res. 23, 85–86.

    Article  Google Scholar 

  • LEE, F. A., and MATTICK, L. R. 1961. Fatty acids of the lipids of vegetables. I. Peas (Pisum sativum) J. Food Sci. 26, 273–275.

    Article  Google Scholar 

  • LEE, F. A., and WAGENKNECHT, A. W. 1951. On the development of off-flavor during the storage of frozen raw peas. Food Res. 16, 239–244.

    Article  Google Scholar 

  • LEHNINGER, A. L. 1975. Biochemistry, 2nd Edition Worth Publishers, New York.

    Google Scholar 

  • LINEWEAVER, H., and BURK, D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–666.

    Article  Google Scholar 

  • LUH, B. S., and DAOUD, H. N. 1971. Effect of break temperature and holding time on pectin and pectic enzymes in tomato pulp. J. Food Sci. 36, 1039–1043.

    Article  Google Scholar 

  • LUH, B. S., and PHITHAKPOL, B. 1972. Characteristics of polyphenoloxidase related to browning of cling peaches. J. Food Sci. 37, 264–268.

    Article  Google Scholar 

  • LUMPRY, R., SMITH, E. L., and GLANTZ, R. R. 1951. Kinetics of carboxypeptidase action. I. Effect of various extrinsic factors on kinetic parameters. J. Am. Chem. Soc. 73, 4330–4340.

    Article  Google Scholar 

  • MASON, H. S. 1955. Comparative biochemistry of the phenolase complex. Adv. Enzymol. 16, 105–184.

    Google Scholar 

  • MEISTER, A. Editor. Advances in Enzymology. John Wiley & Sons, New York.

    Google Scholar 

  • MICHAELIS, L., and MENTEN, M. L. 1913. The kinetics of invertase action. Biochem. Z. 49, 333–369. (German)

    Google Scholar 

  • MILDVAN, A. S. 1974. Mechanism of enzyme action. Annu. Rev. Biochem. 43, 357–399

    Article  Google Scholar 

  • NELSON, J. M., and DAWSON, C. R. 1944. Tyrosinase. Adv. Enzymol. 4, 99–152.

    Google Scholar 

  • NISHIMURA, J. S. 1972. Mechanism of action and other properties of succinyl coenzyme A synthetase. Adv. Enzymol. 36, 183–202.

    Google Scholar 

  • NORTHROP, J. H. 1932. Crystalline trypsin. IV. Reversibility of the inactivation and denaturation of trypsin by heat. J. Gen. Physiol. 16, 323–337.

    Article  Google Scholar 

  • RADOLA, B. J. 1973. Analytical and preparative isoelectric focusing in gel-stabilized layers. Ann. N.Y. Acad. Sci. 209, 127–143.

    Article  Google Scholar 

  • REED, G. 1966. Enzymes in Food Processing. Academic Press, New York.

    Google Scholar 

  • SEGAL, H. L. 1973. Enzymatic interconversion of active and inactive forms of enzymes. Science 180, 25–32.

    Article  Google Scholar 

  • SUMNER, J. B. 1926. The isolation and crystallization of the enzyme urease. J. Biol. Chem. 69, 435–441.

    Google Scholar 

  • VALLEE, B. L., and RIORDAN, J. F. 1969. Chemical approaches to the properties of active sites of enzymes. Annu. Rev. Biochem. 38, 733–794.

    Article  Google Scholar 

  • VAN BUREN, J. P., MOYER, J. C., and ROBINSON, W. B. 1962. Pectin methyleste-rase in snap beans. J. Food Sci. 27, 291–294.

    Article  Google Scholar 

  • WHITAKER, J. R. 1972. Principles of Enzymology for the Food Sciences. Marcel Dekker, New York.

    Google Scholar 

  • WHITAKER, J. R. 1974. Food Related Enzymes. Advances in Chemistry Ser. 136. American Chemical Society, Washington, DC.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 The AVI Publishing Company, Inc.

About this chapter

Cite this chapter

Lee, F.A. (1983). Enzymes. In: Basic Food Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7376-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7376-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7378-0

  • Online ISBN: 978-94-011-7376-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics