Skip to main content

Chromatin Diminution and Chromosome Elimination in Hagfishes

  • Chapter
The Biology of Hagfishes

Summary

Morphological analyses of mitotic and meiotic chromosomes were performed in hagfish species. The kinetochores in both types of chromosomes appeared as a three-layered structure along the surfaces of chromosomes (12–50% of the length of the chromosome) without any constriction. There are no similar reports at present in other vertebrates with long kinetochores.

The cytogenetic examination of hagfish species (Eptatretus okinoseanus, E. burgeri, Paramyxine atami and Myxine garmani from Japan, E. stoutii from Canada, E. cirrhatus from New Zealand, P. sheni from Taiwan, and M. glutinosa from Sweden) revealed differences in chromosome number between germ cells (spermatogonia) and somatic cells (liver, blood, gill and kidney). The differences in chromosome number between spermatogonia (48, 54, 54–62, 72, 80, 52, 48, 66–96, 44 and 16) and somatic cells (34, 34, 34, 34, 34, 36, 34, 34, 28 and 14) were 14, 20, 20–28, 38, 46, 16, 14, 32–62, 16 and 2 in E. stoutii, E. okinoseanus type A, E. okinoseanus type B, E. cirrhatus type A and E. cirrhatus type B, E. burgeri, P. atami, P. sheni, M. glutinosa, and M. garmani, respectively. The percentage of DNA decrease in presumptive somatic cells averaged 52.8% (E. stoutii), 44.2% (E. okinoseanus type A), 49.4–57.7% (E. okinoseanus type B), 48.7% (E. cirrhatus type A) and 54.6% (E. cirrhatus type B), 20.9% (E. burgeri), 40.0% (P. atami), 70.8–74.5% (P. sheni), 43.5% (M. glutinosa) and 29.8% (M. garmani). These results clearly indicate that chromosome elimination takes place during early cleavage in these eight species of Myxinidae, except in germ line cells.

C-banding of metaphase chromosome preparations of germ line and somatic cells revealed that the C-band-positive chromatin in the somatic cells had been almost completely eliminated. Two germ line-restricted DNA-families (174 and 85 bp long) in E. okinoseanus were isolated. They are highly and tandemly repeated independently. These two account for 19% of the total eliminated DNA in E. okinoseanus type A and are located on several C-band positive, small chromosomes that are limited to germ cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, H. and Strahan, R. (1963) Systematics and distribution, in The Biology of Myxine (eds A. Brodal and R. Fänge), Universitetsforlaget, Oslo, Norway, pp. 1–8.

    Google Scholar 

  • Ashihara, T., Kamachi, M., Urata, Y., Kusuzaki, K., Takeshita, H. and Kagawa, K. (1986) Multiparametric analysis using autostage cytofluorometry. Acta Histochemistry and Cytochemistry, 19, 51–59.

    Article  Google Scholar 

  • Arnheim, N. (1983) Concerted evolution of multigene families, in Evolution of Genes and Proteins (eds M. Nei and R.K. Koehn), Sinauer, Sunderland, Massachusetts, pp. 38–61.

    Google Scholar 

  • Baker, R.J. and Bickham, J.W. (1980) Karyotypic evolution in bats: evidence of extensive and conservative chromosomal evolution in closely related taxa. Systematic Zoology, 29, 239–253.

    Article  Google Scholar 

  • Bigot, Y., Hamelin, M.-H. and Periquet, G. (1990) Heterochromatin condensation and evolution of unique satellite-DNA families in two parasitic wasp species: Diadromus pulchellus and Eupelmus vuilleti (Hymenoptera). Molecular Biology and Evolution, 7, 351–364.

    PubMed  CAS  Google Scholar 

  • Britten, R.J. and Kohne, D.E. (1968) Repeated sequences in DNA. Science, 161, 529–540.

    Article  PubMed  CAS  Google Scholar 

  • Boveri, T. (1887) Über Differenzierrung der Zellkerne während der Furchung des Eies von Ascaris megalocephala. Anatomischer Anzeiger, 2, 688–693.

    Google Scholar 

  • Carlton, M.S. and Denton, T.E. (1974) Chromosomes of the Chocorate Grami: a cytogenetic anomaly. Science, 185, 616–619.

    Article  Google Scholar 

  • Comings, D.E. and Okada, T.A. (1972) Holocentric chromosomes in Oncopeltus: kinetochore plates are present in mitosis but absent in meiosis. Chromosoma, 37, 177–192.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, W.F. and Sapienza, C. (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature, 284, 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Dover, G. (1982) Molecular drive: a cohesive mode of species evolution. Nature, 299, 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Goday, C. and Pimpinelli, S. (1993) The occurrence, role and evolution of chromatin diminution in Nematodes. Parasitology Today, 9, 319–322.

    Article  PubMed  CAS  Google Scholar 

  • Halazonetis, T.D. and Kandil, A.N. (1991) Determination of the c-MYC DNA-binding site. Proceedings of the National Academy of Sciences ot the USA, 88, 6162–6166.

    Article  CAS  Google Scholar 

  • Hamilton, M.J., Honeycutt, R.L. and Baker, R.J. (1990) Intragenomic movement, sequence amplification and concerted evolution in satellite DNA in harvest mice, Reithrodontomys: evidence from in situ hybridization. Chromosoma, 99, 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, M.J., Hong, G. and Wichman, H.A. (1992) Intragenomic movement and concerted evolution of satellite DNA in Peromyscus: evidence from in situ hybridization. Cytogenetics and Cell Genetics, 60, 40–44.

    Article  PubMed  CAS  Google Scholar 

  • Hardisty, M.W. (1979) Biology of the Cyclostomes, Chapman & Hall, London.

    Google Scholar 

  • Hennig, W. (1986) Heterochromatin and germ line-restricted DNA, in Germ Line-Soma Differentiation, Results and Problems in Cell Differentiation 13 (ed. W. Hennig), Springer, Berlin, Heidelberg, pp. 175–192.

    Google Scholar 

  • Kimura, M. (1983) The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kitada, J. and Tagawa, M. (1975) Somatic chromosomes of three species of Cyclostomata. Chromosome Information Service, 18, 10–12.

    Google Scholar 

  • Krystal, M., Eustachio, P.B., Ruddle, F.H. and Arnheim, N. (1981) Human nucleolus organizers on homologous chromosomes can share the same ribosomal gene variants. Proceedings of the National Academy of Sciences ot the USA, 78, 5744–5748.

    Article  CAS  Google Scholar 

  • Kohno, S., Nakai, Y., Satoh, S., Yoshida, M. and Kobayashi, H. (1986) Chromosome elimination in Japanese hagfish, Eptatretus burgeri (Agnatha, Cyclostomata). Cytogenetics and Cell Genetics, 41, 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, S., Nakai, Y., Kuro-o, M. and Kohno, S. (1992) Germ line-restricted supernumerary (B) chromosomes in Eptatretus okinoseanus. Cytogenetics and Cell Genetics, 60, 224–228.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, S., Kuro-o, M., Mizuno, S. and Kohno, S. (1993) Germ line-restricted, highly repeated DNA sequences and their chromosomal localization in a Japanese hagfish (Eptatretus okinoseanus). Chromosoma, 102, 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, S., Nakai, Y., Sato, N., Kuro-o, M. and Kohno, S. (1994) Chromosome elimination in northeast Pacific hagfish, Eptatretus stoutii (Cyclostomata, Agnatha). Journal of Heredity, 85, 413–415.

    Google Scholar 

  • Kuo, C., Huang, K. and Mok, H. (1994) Hagfishes of Taiwan (I): a taxonomic revision with description of four new Paramyxine species. Zoological Studies, 33, 126–139.

    Google Scholar 

  • Lee, W., Haslinger, A., Karin, M. and Tjian, R. (1987) Activation of transcription by two factors that bind promoter and enhancer sequences of human metallothionein gene and SV40. Nature, 325, 368–372.

    Article  PubMed  CAS  Google Scholar 

  • Makino, S. (1951) Atlas of Chromosome Numbers in Animals, Iowa State College Press, Ames.

    Google Scholar 

  • Mazzini, G., Giordano, P., Montecucco, C.M. and Riccardi, A. (1980) A rapid cytofluorometric method for quantitative DNA determination on fixed smears. Histochemical Journal, 12, 153–168.

    Article  PubMed  CAS  Google Scholar 

  • Müller, F., Walker, P., Aeby, P., Neuhaus, H., Felder, H., Back, E. and Tobler, H. (1982) Nucleotide sequence of satellite DNA contained in the eliminated genome of Ascaris lumbricoides. Nucleic Acids Research, 10, 7493–7510.

    Article  PubMed  Google Scholar 

  • Nakai, Y., Kohno, S. (1987) Elimination of the largest chromosome pair during differentiation into somatic cells in Japanese hagfish, Myxine garmani (Cyclostomata, Agnatha). Cytogenetics and Cell Genetics, 45, 80–83.

    Article  Google Scholar 

  • Nakai, Y., Kubota, S. and Kohno, S. (1991) Chromatin diminution and chromosome elimination in four Japanese hagfish species. Cytogenetics and Cell Genetics, 56, 196–198.

    Article  PubMed  CAS  Google Scholar 

  • Nakai, Y., Kubota, S., Goto, Y., Ishibashi, T., Davison, W. and Kohno, S. (1995) Chromosome elimination in three Baltic, south Pacific and north-east Pacific hagfish species. Chromosome Research, 3, 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Nogusa, S. (1960) A comparative study of the chromosomes in fishes with particular considerations on taxonomy and evolution. Memoirs of the Hyogo University of Agriculture, 3, 1–68.

    Google Scholar 

  • Nygren, A. and Jahnke, M. (1972) Cytological studies in Myxine glutinosa (Cyclostomata) from the Gullmaren Fjord in Sweden. Swedish Journal of Agriculture Research, 2, 83–88.

    Google Scholar 

  • Ojima, Y. (1983) Fish Cytogenetics (in Japanese), Suikohsha, Tokyo.

    Google Scholar 

  • Ono, T. and Obara, Y. (1994) Karyotypes and Ag-NOR variations in Japanese vespertilionid bats (Mammalia: Chiroptera). Zoological Science, 11, 473–484.

    Google Scholar 

  • Orgel, L.E. and Crick, F.H.C. (1980) Selfish DNA: the ultimate parasite. Nature, 284, 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Patau, K. (1952) Absorption microphotometry of irregular-shaped objects. Chromosoma, 5, 341–362.

    Article  PubMed  CAS  Google Scholar 

  • Pardue, M.L. and Hennig, W. (1990) Heterochromatin: junk or collectors item? Chromosoma, 100, 3–7.

    Article  PubMed  CAS  Google Scholar 

  • Reed, K.M., Beukeboom, L.W., Eickbush, D.G. and Werren, J.H. (1994) Junctions between repetitive DNAs on the PSR chromosomes of Nasonia vitripennis: association of palindromes with recombination. Journal of Molecular Evolution, 38, 352–362.

    Article  PubMed  CAS  Google Scholar 

  • Retzius, G. (1890) Über Zellenteilung bei Myxine glutinosa. Biol Fören (Stockhohn), Förhandl, 2(8), 80–91.

    Google Scholar 

  • Schreiner, A. and Schreiner, K.E. (1904) Über die Entwicklung der mannlichen Geschlechtszellen von Myxine glutinosa (L.). I. Vermehrungsperiode, Reifungsperiode und Reifungsteilungen. Archives de Biologie, 21, 183–355.

    Google Scholar 

  • Shi, L., Ye, Y. and Duan, X. (1980) Comparative cytogenetic studies on the red muntjac, Chinese muntjac and their F1 hybrids. Cytogenetics and Cell Genetics, 26, 22–27.

    Article  Google Scholar 

  • Smith, G.P. (1976) Evolution of repeated DNA sequences by unequal crossover. Science, 191, 528–535.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G.P. (1978) What is the origin and evolution of repetitive DNAs? Trends in Biochemical Science, 3, 34–36.

    Article  Google Scholar 

  • Southern, E.M. (1975) Long range periodicities in mouse satellite DNA. Journal of Molecular Biology, 94, 51–69.

    Article  PubMed  CAS  Google Scholar 

  • Spradling, A.C. (1993) Position effect variegation and genomic instability. Cold Spring Harbor Symposia Quantitative Biology, 58, 585–596.

    Article  CAS  Google Scholar 

  • Streeck, R.E., Moritz, K.B. and Beer, K. (1982) Chromatin diminution in Ascaris suum: nueleotide sequence of the eliminated satellite DNA. Nucleic Acids Research, 10, 3495–3502.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, A.T. (1972) A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research, 75, 304–306.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, K.M. (1967) The chromosomes of some lower chordates. Chromosoma, 21, 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Tobler, H. (1986) The differentiation of germ and somatic cell lines in Nematodes, in Germ Line-Soma Differentiation, Results and Problems in Cell Differentiation 13, (ed. Hennig, W.), Springer, Berlin Heidelberg, pp. 1–69.

    Google Scholar 

  • Tobler, H., Etter, A. and Müller, F. (1992) Chromatin diminution in nematode development. Trends in Genetics, 8, 427–431.

    PubMed  CAS  Google Scholar 

  • Vogt, P. (1990) Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved ‘chromatin folding code’. Human Genetics, 84, 301–336.

    PubMed  CAS  Google Scholar 

  • Walsh, J.B. (1987) Persistence of tandem arrays: Implications for satellite and simple-sequence DNAs. Genetics, 115, 553–567.

    PubMed  CAS  Google Scholar 

  • Zuckerkandl, E. and Hennig, W. (1995) Tracking heterochromatin. Chromosoma, 104, 75–83.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kohno, Si., Kubota, S., Nakai, Y. (1998). Chromatin Diminution and Chromosome Elimination in Hagfishes. In: The Biology of Hagfishes. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5834-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5834-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6465-1

  • Online ISBN: 978-94-011-5834-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics