Skip to main content

Preparation of Micro- and Nanostructures

  • Chapter
Micro/Nanotribology and Its Applications

Part of the book series: NATO ASI Series ((NSSE,volume 330))

Abstract

This paper focuses mainly on the development of dry etching for structures of high aspect ratios, which will offer the potential to manufacture micro-sensors, micro-engines, micro-turbines, micro-actuators, and electronic circuits onto a single IC silicon chip. This technology is based on the highly anisotropic and selective dry etching of Simonocrystals. The suitability of reactive ion etching for the fabrication of micro electro mechanical systems (MEMS) has been evaluated by characterising the change of lateral dimensions vs. depth in etching deep structures in silicon. Fluorine, chlorine -and bromine-containing gases have provided the basis for this investigation. A conventional planar RIE (Reactive Ion Etching) reactor has been used, in some cases with magnetic field enhancement or with the ICP (Inductive Coupled Plasma) Source and low substrate temperatures. For reactive ion etching based on Cl2 or Cl2/HBr plasma, a slightly “positive” (top wider than bottom) slope is achieved when structures are etched with a depth of several 10 pm, whereas a “negative” slope is obtained when etching with an SF6/CCl2F2 based plasma. Pattern transfer with vertical walls is obtained for reactive ion etching based on SF6 (with O2 added) when maintaining the substrate at Iow temperature (in range ≈-100–). Further optimization of plasma chemistries and reactive ion etching procedures should result in runout depths of the order of 0.1 µm/100 gm in Si as well as in organic materials. Etching processes are demonstrated in the realisation in Si microturbine. Axles or stators (nonmoving parts) are etched into the original Si-wafer. The movable parts (rotors, beams, etc.) are prepared from electrochemically etched Si-membranes with defined thicknesses. Then all movable parts are created lithographically on the SiNxOy surface. This is followed by dry etching the mono-crystalline Si-membrane down to the SiNxOy sacrificial layer on the back side of the membrane by an RIE-process. The wafer with the movable parts is flipped onto the wafer with the already etched axle and then positioned and centred. The SiNxOy sacrificial layer is then dissolved by a chemical wet or vapour etch process. Subsequent bonding with a Pyrex glass wafer seals the parts. The topic of lithography (masked ion beam lithography, MIBL), which delivers high resolution and large focus depths as well as e-beam lithography with tunnel-tips, is also addressed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Mohr, W. Ehrfeld, and D. Münchmeyer, J.Vac.Sci.Technol. B6, 1988, pp. 2264–2267

    Google Scholar 

  2. A. B. Frazier and Mark G. Allen, MEMS ’92, IEEE Cat. Nr. 92CH3093–2, pp. 87–92.

    Google Scholar 

  3. Y. Gianchandani and K. Najafi, in ibid, pp.141–146.

    Google Scholar 

  4. Y. Gianchandani and K. Najafi, in ibid, pp.208–213.

    Google Scholar 

  5. Z. L. Zhang, Gy. A. Porklab, N. C. MacDonald, in ibid, pp.72–77.

    Google Scholar 

  6. I. W. Rangelow, and P. Hudek, Microelectronic Engineering 27, 1995, pp.471–474

    Article  Google Scholar 

  7. A. Furuya, F. Shimokawa, T. Matsuura, and R. Sawada, Proc IEEE MEMS’93, IEEE Cat. Nr. 93CH3265–6, 1993, pp.59–64

    Google Scholar 

  8. G. Dahm, I.W. Rangelow, P. Hudek, and H. W. P. Koops, Microelectronic Engineering 27, 1995, pp.263–266.

    Article  Google Scholar 

  9. B. Löchel, A. Maciossek, M. König, H.-L. Huber,, Microelectronic Engineering 23, 1994, pp. 455–459

    Article  Google Scholar 

  10. I. W. Rangelow, F. Shi, P. Hudek, I. Kostic, E. Hammel, H. Löschner, G. Stengl, C. Traher, Microelectronic Engineering 30 (1996) pp.257–260.

    Article  Google Scholar 

  11. I. W. Rangelow, P. Hudek and F. Shi, Vacuum 46 Nr. 12, 1995, pp.1361–1369

    Google Scholar 

  12. I. W. Rangelow and H. Löschner, J.Vac.Sci.Technol. B, (Nov/Dec 1995), pp. 2394–2399

    Google Scholar 

  13. I. W. Rangelow, and P. Hudek, NATO advanced research workshop, NATO ASI Series, Vol. 300, pp. 325–344.

    Google Scholar 

  14. R. Leuschner, E Günther, G. Falk, A. Hammerschmidt, K. Kragler, I. W. Rangelow, J. Zimmermann, Engineering 30 (1996) pp.447–450

    Google Scholar 

  15. R. A. Gottscho, and C. W. Jurgensen, J.Vac.Sci.Technol. B10, 1992, pp. 2133–2147.

    Google Scholar 

  16. J. I. Ulacia, and J. P. McVitte, J. Appl.Phys. 65, 1989, pp.1484–1491.

    Article  ADS  Google Scholar 

  17. J. W. Coburn, and H. F. Winters, Appl. Phys. Lett. 55, 1989, pp. 2730–2732.

    Article  ADS  Google Scholar 

  18. S. G. Ingram, J.Appl.Phys. 68, 1990, pp. 500–504.

    Article  ADS  Google Scholar 

  19. I. W. Rangelow, J. Vac. Sci. and Technology, Vol. A 1, April-June, 1983, pp.410–414

    Google Scholar 

  20. K. Wechsler, I.W. Rangelow, Z. Borkowicz, F. Durst, L. Kadinski, M. Schäfer, Proceedings of the 11th International Symposium on Plasma Chemistry, Loughborough, UK, 22–27 August, 1993, pp. 909–914.

    Google Scholar 

  21. I. W. Rangelow, and R. Kassing, Plasma Surface Engineering, Vol.1, (ISBN 3–88355–150–3), 1988, pp.473–478

    Google Scholar 

  22. I. W. Rangelow, P. Thoren, K. Maßeli, R. Kassing, M. Engelhardt, and S. Schwarzl, Microelectronic Engineering 5, North-Holland, 1986, pp.387–394.

    Google Scholar 

  23. J. Olschimke, I. W. Rangelow, T. Tschudi, and R. Kassing, Microelectronic Engineering 5, North-Holland, 1987 pp.547–552

    Google Scholar 

  24. I.W. Rangelow, P. Thoren, R. Kassing, Microelectronic Engineering 3, 1985, pp.631–638.

    Article  Google Scholar 

  25. A. Fichelscher, I.W. Rangelow and R. Kassing, Proc. of Second International Conf. on Plasma Surface Engineering, in Garmisch-Partenkirchen, FRG, Sept. 10–14, 1990, published in Materials Science and Engineering, A 139, 1991, pp. 412–417

    Google Scholar 

  26. I. W. Rangelow, P. Hudek, F. Shi, I. Kostic, R. Kassing, H. Löschner, A. Chalupka, E. Hammel, G. Stengl, H. Vonach, Stencil Maasken für die Ionen Projektions Lithographie und für die Maskierte lonenstrahl Lithographie, VDI-Bericht von VDI Fachtagung “Maskentechnik für Mikroelektronik/Mikrotechnik-Bausteine” 25/26 Oct. 1995, München.

    Google Scholar 

  27. P. Hudek, I. W. Rangelow, I. Kostic, N. MünzeI, I. Daraktchiev, International Conference on Micro-and Nanoengineering 95, Aix-en-Provence, France, Sept. 26–28, 1995

    Google Scholar 

  28. I.W. Rangelow, F. Shi, P. Hudek, I. Kostic, E. Hammel, H. Löschner, G. Stengl, C. Traher, International Conference on Micro-and Nanoengineering 95, Aix-en-Provence, France, Sept. 26–28, 1995.

    Google Scholar 

  29. V. A. Yunkin, I. W. Rangelow, J. A. Schaefer, Dr. Fischer, E. Voges, and S. Sloboshanin, Microelectronic Engineering 23, 1994, pp..361–364.

    Article  Google Scholar 

  30. S. Tachi, K. Tsujimoto, S. Arai, and T. Kure, J.Vac. Sci. Technol., A 9 (3) 1991, pp. 796–803.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kassing, R., Rangelow, I.W. (1997). Preparation of Micro- and Nanostructures. In: Bhushan, B. (eds) Micro/Nanotribology and Its Applications. NATO ASI Series, vol 330. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5646-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5646-2_42

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6381-4

  • Online ISBN: 978-94-011-5646-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics