Skip to main content

Loeb Measure and Probability

  • Chapter
Nonstandard Analysis

Part of the book series: NATO ASI Series ((ASIC,volume 493))

Abstract

In these notes I give an introduction to nonstandard measure theory and probability theory. As with any short introduction, the number of topics that can be covered is a tiny subset of all that one would really like to discuss; in particular, I don’t always present theorems in their strongest form. However, this development should be adequate for all but an infinitesimal number of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albeverio, S., Fenstad, J-E., Høegh-Krohn, R., and Lindstrøm, T. (1986) Nonstandard Methods in Stochastic Analysis and Mathematical Physics. Academic Press, New York.

    MATH  Google Scholar 

  2. Aldaz, J.M. (1992) A characterization of universal Loeb measurability for completely regular Hausdorff spaces, Can. J. Math, 44, pp. 673–690.

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, R.M. (1976) A nonstandard representation for Brownian motion and Itô integration, Israel Math. Journal 25, pp. 15–46.

    Article  MATH  Google Scholar 

  4. Anderson, R.M. (1982) Star-finite representations of measure spaces, Trans. Amer. Math. Soc. 271, pp. 667–687.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernstein, A.R., and Wattenberg, F. (1969) Nonstandard measure theory, International Symposium on Applications of Model Theory to Algebra, Analysis, and Probability, Holt, Rinehart and Winston, New York, pp. 171–185.

    Google Scholar 

  6. Cutland, N.J. (1983) Nonstandard measure theory and its applications, Bull. London Math. Soc., 15, pp. 529–589.

    Article  MathSciNet  MATH  Google Scholar 

  7. Cutland, N.J. (1995) Loeb measure theory, Developments in Nonstandard Mathematics, (ed. Cutland, N.J., Neves, V., Oliveira, F., and Sousa-Pinto, J.), Longman, Harlow, pp. 151–177.

    Google Scholar 

  8. Davis, M. (1977) Applied Nonstandard Analysis Wiley, New York.

    MATH  Google Scholar 

  9. Henson, C.W. (1972) On the nonstandard representation of measures, Trans. Amer. Math. Soc. 172, pp. 437–446.

    Article  MathSciNet  Google Scholar 

  10. Henson, C.W. (1979) Analytic sets, Baire sets, and the standard part map, Can. J. Math. 31, pp. 663–672.

    Article  MathSciNet  MATH  Google Scholar 

  11. Henson, C.W. and Ross, D. (1993) Analytic mappings on hyperfinite sets, Proc. Amer. Math. Soc. 118, pp. 587–596.

    Article  MathSciNet  MATH  Google Scholar 

  12. Henson, C.W. and Wattenberg, F. (1981) Egoroff’s theorem and the distribution of standard points in a nonstandard model, Proc. Amer. Math. Soc. 81, pp. 455–461.

    MathSciNet  MATH  Google Scholar 

  13. Hurd, A.E. and Loeb, P.A. (1985) An Introduction to Nonstandard Real Analysis Academic Press, New York.

    MATH  Google Scholar 

  14. Jin, R. and Shelah, S. (1996) Compactness of Loeb spaces, to appear.

    Google Scholar 

  15. Kamae, T. (1982) A simple proof of the ergodic theorem using nonstandard analysis, Israel J. Math 42, pp. 284–290.

    Article  MathSciNet  MATH  Google Scholar 

  16. Keiser, H.J. (1984) An infinitesimal approach to stochastic analysis, Memoirs Amer. Math. Soc. 297.

    Google Scholar 

  17. Keisler, H.J., Kunen, K., Miller, A., Leth, S. (1989) Descriptive set theory over hyperfinite sets, J. Symbolic Logic 54, pp. 1167–1180.

    Article  MathSciNet  MATH  Google Scholar 

  18. Landers, D. and Rogge, L. (1985) An introduction to Nonstandard Real Analysis Academic Press, New York.

    Google Scholar 

  19. Landers, D. and Rogge, L. (1987) Universal Loeb-measurability of sets and of the standard part map with applications, Trans. Amer. Math. Soc. 304, pp. 229–243.

    Article  MathSciNet  MATH  Google Scholar 

  20. Lindstrøm, T.L. (1988) An invitation to nonstandard analysis, Nonstandard Analysis and its Applications, (ed. Cutland, N.J.), Cambridge University Press, Cambridge, pp. 1–105.

    Chapter  Google Scholar 

  21. Loeb, P.A. (1975) Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211, pp. 113–122.

    Article  MathSciNet  MATH  Google Scholar 

  22. Loeb, P.A. (1976) Applications of nonstandard analysis to ideal boundaries in potential theory, Israel J. Math. 25, pp. 154–187.

    Article  MathSciNet  MATH  Google Scholar 

  23. Loeb, P.A. (1979) Weak limits of measures and the standard part map, Proc. Amer. Math. Soc. 77, pp. 128–135.

    Article  MathSciNet  MATH  Google Scholar 

  24. Nelson, E. (1987) Radically Elementary Probability Theory Princeton, N.J., Princeton University Press.

    MATH  Google Scholar 

  25. Rao, M.M. (1971) Projective limits of probability saces, J. Multivariate Analysis 1, pp. 28–57.

    Article  MATH  Google Scholar 

  26. Robinson, A. (1966) Nonstandard Analysis North Holland, Amsterdam.

    Google Scholar 

  27. Ross, D.A. (1988) Measures invariant under local homeomorphisms, Proc. Amer. Math. Soc. 102, pp. 901–905.

    Article  MathSciNet  MATH  Google Scholar 

  28. Ross, D.A. (1989) Yet another short proof of the Riesz representation theorem, Math. Proc. Camb. Phil. Soc. 105, pp. 139–140.

    Article  MATH  Google Scholar 

  29. Ross, D.A. (1990) Lifting theorems in nonstandard measure theory, Proc. Amer. Math. Soc. 109, pp. 809–822.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ross, D.A. (1992) Compact measures have Loeb preimages, Proc. Amer. Math. Soc. 115, pp. 365–370.

    Article  MathSciNet  MATH  Google Scholar 

  31. Ross, D.A. (1996) Unions of Loeb nullsets, Proc. Amer. Math. Soc, 124, pp. 1883–1888.

    Article  MathSciNet  MATH  Google Scholar 

  32. Ross, D.A. (1995) Unions of Loeb nullsets: the context, Developments in Nonstandard Mathematics (ed. Cutland, N.J., Neves, V., Oliveira, F., and Sousa-Pinto, J.), Longman, Harlow, pp. 178–185.

    Google Scholar 

  33. Stroyan, K.D. and Luxemburg, W.A.J. (1976) Introduction to the Theory of Infinitesimals. Academic Press, New York.

    MATH  Google Scholar 

  34. Stroyan, K.D. and Bayod, J.M. (1986) Foundations of Infinitesimal Stochastic Analysis. North Holland, Amsterdam.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ross, D.A. (1997). Loeb Measure and Probability. In: Arkeryd, L.O., Cutland, N.J., Henson, C.W. (eds) Nonstandard Analysis. NATO ASI Series, vol 493. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5544-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5544-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6335-7

  • Online ISBN: 978-94-011-5544-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics